Skip to content

CHT 001 - CHT in a manifold microchannel heat sink

Conjugate heat transfer in a manifold microchannel heat sink is considered.

Geometry

Simulation setup guide

Below, you’ll find a simplified guide for setting up this simulation.

Step 0 - Define shared expressions

Start out in the Properties section by defining the following shared expressions for model dimensions:

NameDescriptionExpression
l1length 1 (m)0.6e-3
l2length 2 (m)0.5e-3
l3length 3 (m)0.3e-3
l4length 4 (m)0.15e-3
m1Number of mesh segments along l112
m2Number of mesh segments along l210
m3Number of mesh segments along l312
m4Number of mesh segments along l45

Then, define the following shared expressions for other key values:

NameDescriptionExpression
VolumeFlowRateVolume Flow Rate (mL/s)0.0001
UniformHeatFluxUniform Heat Flux (W/m^2)220000
InletAreaArea of inlet (m^2)l3 * l3
InletVelInlet velocity magnitude (m/s)VolumeFlowRate * 1e-6 / InletArea
InletTempInlet temperature (K)293
AhsbaseBase area for thermal resistance calculation (m^2)10.02 * 11.4 * 1e-6

Finally, define the following Interpolated function type shared expression:

NameDescriptionArguments
nuKinematic viscosity as a function of temperatureT

Under Values, input the following 10 rows:

Tvalues
2830.000001311
2930.000001009
3038.07e-7
3136.61e-7
3235.59e-7
3334.79e-7
3434.16e-7
3533.67e-7
3633.3e-7
3732.95e-7

Now, your nu shared expression should look like in the image below.

nu

 

Step 1 - Create the geometry

In the Model section, create the model geometry by building Box elements and using the Translation operation in the following order:

NameElement typeAxisCenter point (m)Size (m)Rotation (deg)
boxBoxX0l40
Y-l3l30
Zl2 / 2l20
NameElement typeTarget volumesTranslation (m)CopyRepeat count
translateTranslation1X: 0☑️2
Y: l3
Z: 0
NameElement typeTarget volumesTranslation (m)CopyRepeat count
translate 2Translation1, 2, 3X: -l4☑️1
Y: 0
Z: 0

At this point, your model geometry should look like in the image below.

Example image

Then, continue adding geometry elements:

NameElement typeAxisCenter point (m)Size (m)Rotation (deg)
box 2BoxX0l40
Y-l3l30
Zl1 / 2 + l2l10
NameElement typeTarget volumesTranslation (m)CopyRepeat count
translate 3Translation109X: 0☑️2
Y: l3
Z: 0
NameElement typeTarget volumesTranslation (m)CopyRepeat count
translate 4Translation109, 110, 111X: -l4☑️1
Y: 0
Z: 0

Now, your model geometry should look like in the image below.

Example image

Finally, add the following elements:

NameElement typeAxisCenter point (m)Size (m)Rotation (deg)
box 3BoxX0l40
Y-l3l30
Zl3 / 2 + l2 + l1l30
NameElement typeTarget volumesTranslation (m)CopyRepeat count
translate 5Translation217X: -l4☑️1
Y: 0
Z: 0
NameElement typeTarget volumesTranslation (m)CopyRepeat count
translate 6Translation217, 218X: 0☑️1
Y: 2 * l3
Z: 0

Now, your model geometry is finished, and should look like in the image below.

Example image

 

Step 2 - Define the materials

Proceed to the Properties section to define the model materials.

Water

First, pick the Water material from the materials database and assign it to volumes 112, 113, 114, 217, 218, 219 and 220. Save the target as a shared region.

Set the Dynamic viscosity of your water material as 998 * nu(T).

Example image

Copper

Then, pick the Copper material from the materials database and assign it to volumes 1, 2, 3, 4, 5, 6, 109, 110 and 111. Save the target as a shared region.

Example image

Now, your model materials are defined.

 

Step 3 - Define the physics

Proceed to the Physics section to define the physics.

In this example, the Laminar flow, Heat solid and Hear fluid physics are needed.

Laminar flow

  • As laminar flow target, select the water volumes (112, 113, 114, 217, 218, 219 and 220).
  • Add Velocity constraint and name it as Inlet.
    • As Target, select surfaces 57 and 61.
    • As Constraint value (X, Y, Z), select (0, 0, -InletVel).
    • Example image
  • Add Pressure constraint and name it as Outlet.
    • As Target, select surfaces 66 and 70.
    • As Constraint value, select 0.
    • Example image
  • Add Velocity constraint and name it as CHTWalls.
    • As Target, select surfaces 21, 25, 29, 30, 34, 35, 39, and 42.
    • As Constraint value (X, Y, Z), select (0, 0, 0).
    • Example image
  • Add Velocity constraint and name it as AdiabaticWater.
    • As Target, select surfaces 49, 56, 60, 64 and 68.
    • As Constraint value (X, Y, Z), select (0, 0, 0).
    • Example image
  • Add Velocity symmetry and name it as SymmetryWallX.
    • As Target, select surfaces 43, 47, 50, 54, 58, 62 and 67.
    • Example image
  • Add Velocity symmetry and name it as SymmetryWallY.
    • As Target, select surfaces 44, 51, 55, 59, 65 and 69.
    • Example image
  • Add the Heat fluid coupling Thermal fluid.

Heat solid

  • As Heat solid target, select the copper region.
  • Add Heat source and name it as UniformHeatFlux.
    • As Target, select all the bottom surface of the copper region (surfaces 5, 10, 15, 20, 24 and 28).
    • As Heat source, select UniformHeatFlux.
    • Example image

Heat fluid

  • As Heat fluid target, select the water region.
  • Add Constraint and name it as Tinlet.
    • As Target, select surfaces 57 and 61.
    • As Temperature constraint, select InletTemp.
    • Example image

Now, your simulation physics are defined. Before moving on, check that your physics tree looks like in the image below.

Example image

 

Step 4 - Generate the mesh

Proceed to the Simulations section and create a new structured mesh:

  1. Set Mesh quality to Expert settings.
  2. Scroll down to Structured meshing and click Add structured mesh entity 16 times in total.
  3. Assign a different volume as target for each entity, so that each entity targets a different volume in the model.
  4. Save your work so far by clicking Apply.
  5. Assign lengths to your structured mesh entities segments according to this table:
    Entity target volumesA SegmentsB SegmentsC Segments
    1, 2, 3, 4, 5, 6m2 (5e-5)m3 (2.5e-5)m4 (3e-5)
    109, 110, 111, 112, 113, 114m1 (5e-5)m3 (2.5e-5)m4 (3e-5)
    217, 218, 219, 220m3 (2.5e-5)m3 (2.5e-5)m4 (3e-5)
  6. Click Apply & mesh.

Your finished mesh should look something like in the image below:

Example image

 

Step 5 - Simulate

In the Simulations section, create a new simulation:

  • In Simulation settings:
    • Set Analysis type to Steady state.
    • Set Solver mode to Direct solver.
  • In Mesh, select the mesh you created.
  • In Outputs, add the 13 following outputs (or only those interesting to you):
    Output typeNameOutput expression
    Fieldpp
    FieldVV
    FieldTT
    Custom valueflowrateinintegrate(reg.inlet_target, transpose(V)*-normal(reg.water_target),2)
    Custom valueflowrateoutintegrate(reg.outlet_target, transpose(V)*-normal(reg.water_target),2)
    Custom valueAvgCHTWallTempintegrate(reg.chtwalls_target, T, 2)/integrate(reg.chtwalls_target, 1.0, 2)
    Custom valuePressureDropintegrate(reg.inlet_target, p, 2)/integrate(reg.inlet_target, 1.0, 2)-integrate(reg.outlet_target, p, 2)/integrate(reg.outlet_target, 1.0, 2)
    Custom valueTbasemaxmaxvalue(reg.uniformheatflux_target, T, 2)
    Custom valueTbaseminminvalue(reg.uniformheatflux_target, T, 2)
    Custom valueTbaseavgintegrate(reg.uniformheatflux_target, T, 2)/integrate(reg.uniformheatflux_target, 1.0, 2)
    Custom valueThermalResistance(maxvalue(reg.uniformheatflux_target, T, 2)-InletTemp)/(UniformHeatFlux*Ahsbase)
    Custom valuePumpingPower(integrate(reg.inlet_target, p, 2)/integrate(reg.inlet_target, 1.0, 2)-integrate(reg.outlet_target, p, 2)/integrate(reg.outlet_target, 1.0, 2))*abs(integrate(reg.inlet_target, transpose(V)*-normal(reg.water_target),2))
    Custom valueMeanAbsoluteTemperatureDeviation(abs(maxvalue(reg.uniformheatflux_target, T, 2) - integrate(reg.uniformheatflux_target, T, 2)/integrate(reg.uniformheatflux_target, 1.0, 2)) + abs(minvalue(reg.uniformheatflux_target, T, 2) - integrate(reg.uniformheatflux_target, T, 2)/integrate(reg.uniformheatflux_target, 1.0, 2)))/2.0

Run your simulation by clicking Not Run.

 

Step 6 - Results

In the Simulations section, add visualizations to see field output results. In a steady state simulation, only one data point is extracted for each custom value output. See custom value output data in the Summary. Some examples are given below.

  • Velocity field V visualized:
    • Glyph, scale factor 0.00003
    • Example image
  • Temperature field T visualized:
    • Example image
  • Summary:
    • Example image

To extract multiple values for each custom value output, create a sweep or a transient simulation with enough time-steps.

References

[1] K. Tang, G. Lin, Y. Guo, J. Huang, H. Zhang, J. Miao. Simulation and optimization of thermal performance in diverging/converging manifold microchannel heat sink. International Journal of Heat and Mass Transfer, Vol 200, 2023. https://doi.org/10.1016/j.ijheatmasstransfer.2022.123495.