Skip to content

Heat solid

Heat transfer in solids is a thermal conduction process that is governed by the equation

ρCpβˆ‚Tβˆ‚t=βˆ’βˆ‡β‹…q+Q,\begin{equation} \rho C_p \frac{\partial T}{\partial t} = -\nabla \cdot \boldsymbol{q} + Q, \end{equation}

where

  • ρ\rho is the material density (kg/m3kg/m^3)
  • CpC_p is specific heat capacity of the material (J/kgβ‹…KJ/kg \cdot K)
  • q\boldsymbol{q} is the heat flux density (W/m2W/m^2)
  • QQ is the volumetric heat source (W/m3W/m^3)
  • TT is the Temperature field (KK).

Heat flux density due to conduction is given by Fick’s law of diffusion

q=βˆ’ΞΊβˆ‡T,\begin{equation} \boldsymbol{q} = -\kappa \nabla T, \end{equation}

where ΞΊ\kappa is the thermal conductivity of the material (W/m2KW/m^2 K).

The governing equation (1)(1) then becomes

βˆ’ΟCpβˆ‚Tβˆ‚t+βˆ‡β‹…(ΞΊβˆ‡T)+Q=0.\begin{equation} -\rho C_p \frac{\partial T}{\partial t} + \nabla \cdot (\kappa \nabla T) + Q = 0. \end{equation}

The weak form of solid mechanics is obtained by multiplying the partial differential equation in (3)(3) with the test function of Temperature field Tβ€²T^\prime, and integrating over the whole domain Ξ©\Omega to get

βˆ«Ξ©β€…β€Šβˆ’ΟCpβˆ‚Tβˆ‚tβ€…β€ŠTβ€²β€…β€ŠdΞ©+βˆ«Ξ©β€…β€Šβˆ‡β‹…(ΞΊβˆ‡T)β€…β€ŠTβ€²β€…β€ŠdΞ©+βˆ«Ξ©β€…β€ŠQβ€…β€ŠTβ€²β€…β€ŠdΞ©=0. \int_{\Omega}\; -\rho C_p \frac{\partial T}{\partial t} \; T^{\prime} \; d\Omega + \int_{\Omega}\; \nabla \cdot (\kappa \nabla T) \; T^{\prime} \; d\Omega + \int_{\Omega}\; Q \; T^{\prime} \; d\Omega = 0.

Applying Leibniz rule on the divergence term, we get

βˆ«Ξ©β€…β€Šβˆ’ΟCpβˆ‚Tβˆ‚tβ€…β€ŠTβ€²β€…β€ŠdΞ©+βˆ«Ξ©β€…β€Šβˆ’ΞΊβˆ‡Tβ‹…βˆ‡Tβ€²β€…β€ŠdΞ©+βˆ«Ξ©β€…β€Šβˆ‡β‹…(ΞΊβˆ‡Tβ€…β€ŠTβ€²)β€…β€ŠdΞ©+βˆ«Ξ©β€…β€ŠQβ€…β€ŠTβ€²β€…β€ŠdΞ©=0. \int_{\Omega}\; -\rho C_p \frac{\partial T}{\partial t} \; T^{\prime} \; d\Omega + \int_{\Omega}\; -\kappa \nabla T \cdot \nabla T^{\prime} \; d\Omega + \int_{\Omega}\; \nabla \cdot (\kappa \nabla T \; T^{\prime}) \; d\Omega + \int_{\Omega}\; Q \; T^{\prime} \; d\Omega = 0.

Applying Divergence theorem on the divergence term, we get

βˆ«Ξ©β€…β€Šβˆ’ΟCpβˆ‚Tβˆ‚tβ€…β€ŠTβ€²β€…β€ŠdΞ©+βˆ«Ξ©β€…β€Šβˆ’ΞΊβˆ‡Tβ‹…βˆ‡Tβ€²β€…β€ŠdΞ©+βˆ«Ξ“β€…β€Š(ΞΊβˆ‡Tβ‹…n)β€…β€ŠTβ€²β€…β€ŠdΞ“+βˆ«Ξ©β€…β€ŠQβ€…β€ŠTβ€²β€…β€ŠdΞ©=0. \int_{\Omega}\; -\rho C_p \frac{\partial T}{\partial t} \; T^{\prime} \; d\Omega + \int_{\Omega}\; -\kappa \nabla T \cdot \nabla T^{\prime} \; d\Omega + \int_{\Gamma}\; (\kappa \nabla T \cdot \boldsymbol{n}) \; T^{\prime} \; d\Gamma + \int_{\Omega}\; Q \; T^{\prime} \; d\Omega = 0.

Substituting (2)(2) into the boundary term, we get the final weak formulation

βˆ«Ξ©β€…β€Šβˆ’ΟCpβˆ‚Tβˆ‚tβ€…β€ŠTβ€²β€…β€ŠdΞ©+βˆ«Ξ©β€…β€Šβˆ’ΞΊβˆ‡Tβ‹…βˆ‡Tβ€²β€…β€ŠdΞ©+βˆ«Ξ“β€…β€Š(βˆ’qβ‹…n)β€…β€ŠTβ€²β€…β€ŠdΞ“+βˆ«Ξ©β€…β€ŠQβ€…β€ŠTβ€²β€…β€ŠdΞ©=0. \int_{\Omega}\; -\rho C_p \frac{\partial T}{\partial t} \; T^{\prime} \; d\Omega + \int_{\Omega}\; -\kappa \nabla T \cdot \nabla T^{\prime} \; d\Omega + \int_{\Gamma}\; (-\boldsymbol{q} \cdot \boldsymbol{n}) \; T^{\prime} \; d\Gamma + \int_{\Omega}\; Q \; T^{\prime} \; d\Omega = 0.

Applies a fixed temperature TT to a selected region in Kelvins. This enforces a Dirichlet boundary condition for the heat equation, keeping the temperature constant at the specified value. Use this to setup fixed-temperature boundaries for the model.

Applies a heat source QQ to a selected region, allowing you to model energy input or removal in a heat transfer simulation. This enforces a Neumann boundary condition in the context of finite element formulation. Zero heat flux boundary condition is automatically applied at the boundaries.

Imposes periodic boundary conditions on scalar field TT. Reduces computational domain size for symmetric problems.


This formulation supports the following couplings:

Joule heating (Current flow or Magnetism H)
Models resistive heat generation caused by electrical currents.