Skip to content

SC 002 - Twisted superconductor AC Loss

In this tutorial, AC loss in a high-temperature superconducting (HTS) wire is simulated using the H-φ formulation.

The wire consists of twisted superconducting filaments embedded into a copper matrix. The whole modelling domain with an air cylinder around the wire is illustrated below.

Tutorial image

ElementDimension
Air cylinder diameter10 mm
Copper cylinder diameter535 μm
Filament diameter350 μm
Domain length10 mm
  • Joule losses as a function of time in the copper and the superconducting filament regions. The losses over the volume of interest can be computed as
P(t)=E(t)J(t) dV.P(t)=\int\boldsymbol{E}(t)\cdot \boldsymbol{J}(t)~\rm{d} V.

Magnetic permeability, μ\mu:

  • all domains: μ0\mu_0

Electric resistivity, ρ\rho:

  • Copper: 1010 Ωm10^{-10} ~ \Omega \rm m
  • Superconducting filaments:
    • ρ=EcJc(JJc)n1\rho = \frac{E_{\rm c}}{J_{\rm c}} \left( \frac{||J||}{J_{\rm c}} \right) ^{n-1}
      • Critical electric field strength, Ec=100 μV/mE_{\rm c} = 100 ~ \rm μV/m
      • Exponent, n=30n = 30
      • Critical electric current, Ic=100 AI_{\rm c} = 100 ~ \rm A
      • Total cross-section are of superconducting filaments, Asc=3.4541107 m2A_{\rm sc} = 3.4541 \cdot 10^{-7} ~ \rm m^2
      • Critical electric current density, Jc=Ic/AscJ_{\rm c} = I_{\rm c} / A_{\rm sc}

The problem is sourced by applying a total current of

I(t)=0.8 Ic sin(2πft),I(t) = 0.8 ~ I_{\rm c} ~ \sin(2 \pi f t),

where the frequency ff is 50 Hz50 ~ \rm Hz.

Here you’ll find a detailed step-by-step tutorial on how to simulate AC loss in a twisted filament HTS wire Quanscient Allsolve.

  1. Start with a new project and name it as

    SC twisted filament AC loss
  2. Import the geometry as a .step file with default import options.

    File download link: twisted-superconductor.step

    Tutorial image

  3. Confirm model changes.

  1. Go to the Common sidebar.

  2. Define a shared region for air:

    Region nameRegion typeTarget
    airVolumeAir cylinder

    Tutorial image

  3. Define a shared region for copper:

    Region nameRegion typeTarget
    copperVolumeCopper matrix

    Tutorial image

  4. Define a shared region for the superconducting filaments:

    Region nameRegion typeTarget
    scVolumeSC filaments

    Tutorial image

  1. Assign the Air material to the air shared region:

    Tutorial image

  2. Assign the Copper material to the copper shared region:

    Tutorial image

  3. Assign the YBCO superconductor material to the sc shared region:

    Tutorial image

  1. Define new variables:

    NameDescriptionExpression
    fFrequency [Hz]50
    YBCO_IcCritical current [A]100
    YBCO_AscFilament cross-section area [m^2]3.4541e-7
    IopOperating current [A]0.8 * YBCO_Ic * sin(2 * pi * f * t)
  2. Modify existing variables:

    NameModified expression
    YBCO_JcYBCO_Ic / YBCO_Asc
    YBCO_n30

Step 5 - Define physics and apply the current source

Section titled “Step 5 - Define physics and apply the current source”
  1. Go to the Physics section.

  2. Add the Magnetism H physics:

    PhysicsTarget
    Magnetism HCopper matrix and SC filaments

    Tutorial image

  3. Add the Magnetism φ physics:

    PhysicsTarget
    Magnetism φAir cylinder (air shared region)

    Tutorial image

  4. Add a Lump I/V cut interaction to Magnetism φ.

    Interaction nameInteraction typeTargetValue
    Current sourceLump I/V cuta counter-clockwise loop at the top edge of the copper matrixIop

    Tutorial image

  5. Add a Constraint interaction to Magnetism φ:

    Interaction nameInteraction typeTargetValue
    GaugeConstrainta point at the external boundary of the air domain0

    Tutorial image

  6. Add the H-φ coupling interaction to Magnetism H.

  7. Before moving on, check that your physics tree matches the one below:

    Tutorial image

  1. Go to the Simulations section.

  2. Add a new mesh.

  3. Set Mesh quality to Expert settings.

  4. Set Used mesher to Basic.

  5. Set Curvature enhancement to 25.

  6. Generate the mesh and check the preview.

    Tutorial image

    Tutorial image

  1. Add a new simulation.

  2. Set Analysis type to Transient.

  3. Select Transient settings:

    Timestep algorithmStart time [s]End time [s]Timestep size [s]
    Implicit Euler00.010.0001
  4. Set Solver mode to Iterative solver.

  5. Set Node count to 50.

  6. Select Mesh 1 as the mesh for your simulation.

  7. Define custom value outputs for computing Joule losses in the filaments and copper:

    Output nameOutput typeOutput expression
    SC lossCustom value outputintegrate(reg.sc, transpose(E) * j, 4)
    Cu lossCustom value outputintegrate(reg.copper, transpose(E) * j, 4)
  8. Open the Script for your simulation.

  9. Enable Scripting mode.

  10. Replace the first autogenerated line under # Magnetism H with the following Newton-linearization [4]:

    rho = 1/par.sigma(df.j)
    dedj = rho*qs.eye(3) + (expr.YBCO_n-1.0)*rho/qs.max(df.j*df.j, 1e-40) * df.j * qs.transpose(df.j)
    dofe = rho*df.j + dedj * (qs.curl(qs.dof(fld.H))+var.curl_dof_Hs - qs.curl(fld.H)-var.curl_Hs)
    form += qs.integral(reg.sc, dofe * (qs.curl(qs.tf(fld.H)) - var.curl_tf_Hs))
    form += qs.integral(reg.copper, qs.inverse(par.sigma(df.j)) * (qs.curl(qs.dof(fld.H)) + var.curl_dof_Hs) * (qs.curl(qs.tf(fld.H)) - var.curl_tf_Hs))

    Tutorial image

Step 8 - Run the simulation and see results

Section titled “Step 8 - Run the simulation and see results”
  1. Run the simulation.

  2. To follow the simulation progress, open Logs.

  3. The SC and Cu loss results can be seen in Plotting, even while the simulation is running:

    Tutorial image

[1] H-φ Formulation in Sparselizard Combined With Domain Decomposition Methods for Modeling Superconducting Tapes, Stacks, and Twisted Wires. https://doi.org/10.1109/TASC.2023.3240389

[2] Allsolve demo project of Superconductor AC losses. https://allsolve.quanscient.com/#/projects/demo/8fed82d1-5bf0-4c02-835b-94e65a60f847

[3] Youtube tutorial of Superconductor AC losses. https://youtu.be/B9QZZ5y7RpQ

[4] Newton Linearization. https://en.wikiversity.org/wiki/Nonlinear_finite_elements/Newton_method_for_finite_elements