Skip to content

Introduction


This section contains an overview of general approach to formulating the physics that is solved in Allsolve.

Vector calculus identities

Divergence of a curl

βˆ‡β‹…(βˆ‡Γ—A)=0\begin{align} \nabla \cdot (\nabla \times \boldsymbol{A}) = 0 \end{align}

Leibniz rule for nabla operator

βˆ‡β‹…(ab)=βˆ‡aβ‹…b+a(βˆ‡β‹…b)\begin{align} \nabla \cdot (a \boldsymbol{b}) = \nabla a \cdot \boldsymbol{b} + a(\nabla \cdot \boldsymbol{b}) \end{align}

Per partes theorem for scalars

Let UU and VV be a scalar functions, Ξ©\Omega a set with boundary Ξ“\Gamma. Then let n\boldsymbol{n} be a unit normal vector pointing outwards. Then

βˆ«Ξ©β€…β€ŠUβˆ‡Vβ€…β€ŠdΞ©=βˆ«Ξ“β€…β€ŠUVnβ€…β€ŠdΞ“βˆ’βˆ«Ξ©β€…β€ŠVβˆ‡Uβ€…β€ŠdΞ©\begin{align} \int_{\Omega}\; U\nabla V\; d \Omega = \int_{\Gamma}\; UV\boldsymbol{n}\; d \Gamma - \int_{\Omega}\; V\nabla U\; d \Omega \end{align}

Per partes theorem for vectors

Let A\boldsymbol{A} be a vector field and ff a scalar function defined on a domain Ξ©\Omega with boundary Ξ“\Gamma snd let n\boldsymbol{n} be a unit normal vector pointing outwards. Then

βˆ«Ξ©β€…β€Š(Aβ‹…βˆ‡f)β€…β€ŠdΞ©=βˆ«Ξ“β€…β€Šfβ€…β€Š(Aβ‹…n)β€…β€ŠdΞ“βˆ’βˆ«Ξ©β€…β€Šfβ€…β€Š(βˆ‡β‹…A)β€…β€ŠdΞ©\begin{align} \int_{\Omega}\; (\boldsymbol{A} \cdot \nabla f)\; d \Omega = \int_{\Gamma}\; f\; (\boldsymbol{A} \cdot \boldsymbol{n})\; d \Gamma - \int_{\Omega}\; f\; (\nabla \cdot \boldsymbol{A})\; d \Omega \end{align}

Divergence theorem

Let Ξ©\Omega be a set with boundary Ξ“\Gamma, n\boldsymbol{n} be a unit normal vector pointing outwards and T\boldsymbol{T} be a vector field or a second-order tensor. Then

βˆ«Ξ©βˆ‡β‹…Tβ€…β€ŠdΞ©=βˆ«Ξ“β€…β€ŠTβ‹…nβ€…β€ŠdΞ“\begin{align} \int_{\Omega} \nabla \cdot \boldsymbol{T}\; d \Omega = \int_{\Gamma}\; \boldsymbol{T} \cdot \boldsymbol{n}\; d \Gamma \end{align}

Strong and weak formulation

Common example of PDE (partial differential equation) is the Poisson’s equation.

Ξ”u=fβ€…β€Šon Ξ©\begin{align} \Delta u &= f\; \text{on}\ \Omega \end{align}

This is the strong formulation of Poisson’s equation. The strong formulation refers to a precise mathematical representation of a problem with very strict requirements for a solution. The weak formulation is an alternative mathematical representation that relaxes the regularity requirements for solutions. The weak formulation is computationally preferable as it provides the foundation for numerical methods such as the Finite Element Method (FEM). Both Divergence theorem and Per partes theorem (Integration by parts) can be applied on the strong formulation. Using these theorems we derive the weak formulation from the strong formulation. To begin, we choose a test function uβ€²u^{\prime}. We then multiply both sides of the differential equations by uβ€²u^{\prime} and integrate over Ξ©\Omega.

βˆ«Ξ©β€…β€Š(Ξ”uuβ€²βˆ’fuβ€²)β€…β€ŠdΞ©=0\begin{align} \int_{\Omega}\; (\Delta uu^{\prime} - fu^{\prime})\; d \Omega = 0 \end{align}

For the first term of the left side we apply Per partes theorem.

In this case U=uβ€²U = u^{\prime}, V=βˆ‡uV = \nabla u and n\boldsymbol{n} is the unit normal vector.

βˆ«Ξ©β€…β€ŠΞ”uβ€…β€Šuβ€²β€…β€ŠdΞ©=βˆ«Ξ©β€…β€Š(βˆ‡β‹…βˆ‡u)β€…β€Šuβ€²β€…β€ŠdΞ©=βˆ«Ξ“β€…β€Š(βˆ‡uβ‹…n)β€…β€Šuβ€²β€…β€ŠdΞ“βˆ’βˆ«Ξ©β€…β€Šβˆ‡uβ‹…βˆ‡uβ€²β€…β€ŠdΞ©\begin{align} \int_{\Omega}\; \Delta u\; u^{\prime}\; d \Omega = \int_{\Omega}\; (\nabla \cdot \nabla u)\; u^{\prime}\; d \Omega = \int_{\Gamma}\; (\nabla u \cdot \boldsymbol{n})\; u^{\prime}\; d \Gamma - \int_{\Omega}\; \nabla u \cdot \nabla u^{\prime}\; d \Omega \end{align}

Overall we get a weak formulation of (3).

βˆ«Ξ“β€…β€Š(βˆ‡u β‹…n)β€…β€Šuβ€²β€…β€ŠdΞ“βˆ’βˆ«Ξ©β€…β€Š(βˆ‡uβ‹…βˆ‡uβ€²+fβ€…β€Šuβ€²)β€…β€ŠdΞ©=0\begin{align} \int_{\Gamma}\; (\nabla u\ \cdot \boldsymbol{n})\; u^{\prime}\; d \Gamma - \int_{\Omega}\; (\nabla u \cdot \nabla u^{\prime} + f\; u^{\prime})\; d \Omega = 0 \end{align}

Now, we have less strict regularity requirements for uu and ff. Certainly we know that solution to (3) is also a solution to (7) and every weak solution smooth enough is a solution to (3).