Skip to content

Acoustic waves

This formulation of acoustic waves is derived under linear approximation assumption of Newtonian fluids. Such fluids follows the Navier–Stokes equations for compressible Newtonian fluids

ρ(vt+(v)v)=p+(μ(v+(v)T))+(23μv)+fρt+(ρv)=0.\begin{align} \rho \Bigr(\frac{\partial \boldsymbol{v}}{\partial t} + (\boldsymbol{v} \cdot \nabla) \boldsymbol{v} \Bigr) &= -\nabla p + \nabla \cdot (\mu (\nabla \boldsymbol{v} + (\nabla \boldsymbol{v})^T)) + \nabla (-\tfrac{2}{3} \mu \nabla \cdot \boldsymbol{v}) + \boldsymbol{f} \\[10pt] \frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \boldsymbol{v}) &= 0. \end{align}

For small density and pressure variations the speed of sound in the fluid cc is given by

c=pρ.\begin{align} c = \sqrt{\frac{\partial p}{\partial \rho}}. \end{align}

We can neglect the viscosity terms in (1) since we are interesteed only in the region within a few acoustic wavelengths. Considering an inviscid fluid and no external forces, (1) rewrites as

ρ(vt+(v)v)=pρt+(ρv)=0,\begin{align} \rho \Bigr(\frac{\partial \boldsymbol{v}}{\partial t} + (\boldsymbol{v} \cdot \nabla) \boldsymbol{v}\Bigr) = -\nabla p \\[10pt] \frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \boldsymbol{v}) = 0, \end{align}

which can, for tiny perturbations, be linearised around a mean value:

p=p+δp,ρ=ρ+δρ,v=v+δv=δv,\begin{align} p = \overline{p} + \delta p,\\ \rho = \overline{\rho} + \delta \rho,\\ \boldsymbol{v} = \overline{\boldsymbol{v}} + \delta \boldsymbol{v} = \delta \boldsymbol{v}, \end{align}

where the overlined quantities are the mean values (constant in space and time) and the δ\delta terms are tiny perturbations. Since the fluid is at rest, v=0\overline{\boldsymbol{v}} = 0. Injecting equations (6) to (8) into equations (4) and (5) and neglecting nonlinear perturbations gives

ρδvt+δρδvt+ρ(δv)δv=δpδρt+ρδv=0.\begin{align} \overline{\rho} \frac{\partial \delta \boldsymbol{v}}{\partial t} + \delta \rho \displaystyle\frac{\partial \delta \boldsymbol{v}}{\partial t} + \overline{\rho} (\delta \boldsymbol{v} \cdot \nabla) \delta \boldsymbol{v} = - \nabla \delta p\\[10pt] \frac{\partial \delta \rho}{\partial t} + \overline{\rho} \nabla \cdot \delta \boldsymbol{v} = 0. \end{align}

By algebraic manipulation (using the product rule and the continuity equation multiplied by δv\delta \boldsymbol{v}) and neglecting second‐order perturbations we obtain useful approximation

ρ(δv ⁣)δvδρδvt.\begin{align} \overline{\rho}\,(\delta \boldsymbol{v}\!\cdot\nabla)\,\delta \boldsymbol{v} \approx - \delta \rho \frac{\partial \delta \boldsymbol{v}}{\partial t}. \end{align}

As a result, the two middle terms in the first relation of (9) cancel and we obtain obtains

ρδvt+δp=0δρt+ρδv=0.\begin{align} \overline{\rho} \frac{\partial \delta \boldsymbol{v}}{\partial t} + \nabla\,\delta p &= 0 \\[10pt] \frac{\partial \delta \rho}{\partial t} + \overline{\rho} \nabla \cdot \delta \boldsymbol{v} &= 0. \end{align}

Taking the divergence of the first relation and the time derivative of the second we get

ρδvt+Δδp=02δρt2+ρδvt=0,\begin{align} \overline{\rho} \nabla \cdot \frac{\partial \delta \boldsymbol{v}}{\partial t} + \Delta \delta p &= 0 \\[10pt] \frac{\partial^2 \delta \rho}{\partial t^2} + \overline{\rho} \nabla \cdot \frac{\partial \delta \boldsymbol{v}}{\partial t} &= 0, \end{align}

which can be combined into a single equation

2δρt2Δδp=0.\begin{align} \frac{\partial^2 \delta \rho}{\partial t^2} - \Delta \delta p = 0. \end{align}

With the isentropic approximation (3) the acoustic wave equation can be written as

Δδp1c22δpt2=0,\begin{align} \Delta \delta p - \frac{1}{c^2} \frac{\partial^2 \delta p}{\partial t^2} = 0, \end{align}

with cc the speed of sound in the fluid and δp\delta p the pressure variation around the mean pressure.

From now on we will write the δp\delta p just as pp. To form the weak formulation we will multiply both sides by test function pp^{\prime} and integrate over the whole domain Ω\Omega.

Ω (Δp1c22pt2) p dΩ=0.\begin{align} \int_{\Omega}\ (\Delta p - \frac{1}{c^2}\frac{\partial^2 p}{\partial t^2})\ p^{\prime}\ d\Omega = 0. \end{align}

We can use the Leibniz rule for a nabla operator to rewrite the Laplace term.

Ω (pp) dΩΩ pp dΩΩ 1c22pt2 p dΩ=0,\begin{align} \int_{\Omega}\ \nabla \cdot (p^{\prime} \nabla p)\ d\Omega - \int_{\Omega}\ \nabla p \cdot \nabla p^{\prime}\ d\Omega - \int_{\Omega}\ \frac{1}{c^2}\frac{\partial^2 p}{\partial t^2} \ p^{\prime}\ d\Omega = 0, \end{align}

and then apply the Divergence theorem on the divergence term to obtain the weak formulation

Γ (pn) p dΓΩ pp dΩΩ 1c22pt2 p dΩ=0.\begin{align} \int_{\Gamma}\ (\nabla p \cdot \boldsymbol{n})\ p^{\prime}\ d\Gamma - \int_{\Omega}\ \nabla p \cdot \nabla p^{\prime}\ d\Omega - \int_{\Omega}\ \frac{1}{c^2}\frac{\partial^2 p}{\partial t^2} \ p^{\prime}\ d\Omega = 0. \end{align}

This formulation supports the following couplings:

Acoustic structure (Solid mechanics)

Acoustic structure (Elastic waves)