Skip to content

Acoustic waves

This formulation of acoustic waves is derived under linear approximation assumption of Newtonian fluids. Such fluids follows the Navier–Stokes equations for compressible Newtonian fluids

ρ(βˆ‚vβˆ‚t+(vβ‹…βˆ‡)v)=βˆ’βˆ‡p+βˆ‡β‹…(ΞΌ(βˆ‡v+(βˆ‡v)T))+βˆ‡(βˆ’23ΞΌβˆ‡β‹…v)+fβˆ‚Οβˆ‚t+βˆ‡β‹…(ρv)=0.\begin{align} \rho \Bigr(\frac{\partial \boldsymbol{v}}{\partial t} + (\boldsymbol{v} \cdot \nabla) \boldsymbol{v} \Bigr) &= -\nabla p + \nabla \cdot (\mu (\nabla \boldsymbol{v} + (\nabla \boldsymbol{v})^T)) + \nabla (-\tfrac{2}{3} \mu \nabla \cdot \boldsymbol{v}) + \boldsymbol{f} \\[10pt] \frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \boldsymbol{v}) &= 0. \end{align}

For small density and pressure variations the speed of sound in the fluid cc is given by

c=βˆ‚pβˆ‚Ο.\begin{align} c = \sqrt{\frac{\partial p}{\partial \rho}}. \end{align}

We can neglect the viscosity terms in (1) since we are interesteed only in the region within a few acoustic wavelengths. Considering an inviscid fluid and no external forces, (1) rewrites as

ρ(βˆ‚vβˆ‚t+(vβ‹…βˆ‡)v)=βˆ’βˆ‡pβˆ‚Οβˆ‚t+βˆ‡β‹…(ρv)=0,\begin{align} \rho \Bigr(\frac{\partial \boldsymbol{v}}{\partial t} + (\boldsymbol{v} \cdot \nabla) \boldsymbol{v}\Bigr) = -\nabla p \\[10pt] \frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \boldsymbol{v}) = 0, \end{align}

which can, for tiny perturbations, be linearised around a mean value:

p=pβ€Ύ+Ξ΄p,ρ=ρ‾+δρ,v=vβ€Ύ+Ξ΄v=Ξ΄v,\begin{align} p = \overline{p} + \delta p,\\ \rho = \overline{\rho} + \delta \rho,\\ \boldsymbol{v} = \overline{\boldsymbol{v}} + \delta \boldsymbol{v} = \delta \boldsymbol{v}, \end{align}

where the overlined quantities are the mean values (constant in space and time) and the Ξ΄\delta terms are tiny perturbations. Since the fluid is at rest, vβ€Ύ=0\overline{\boldsymbol{v}} = 0. Injecting equations (6) to (8) into equations (4) and (5) and neglecting nonlinear perturbations gives

Οβ€Ύβˆ‚Ξ΄vβˆ‚t+Ξ΄Οβˆ‚Ξ΄vβˆ‚t+ρ‾(Ξ΄vβ‹…βˆ‡)Ξ΄v=βˆ’βˆ‡Ξ΄pβˆ‚Ξ΄Οβˆ‚t+Οβ€Ύβˆ‡β‹…Ξ΄v=0.\begin{align} \overline{\rho} \frac{\partial \delta \boldsymbol{v}}{\partial t} + \delta \rho \displaystyle\frac{\partial \delta \boldsymbol{v}}{\partial t} + \overline{\rho} (\delta \boldsymbol{v} \cdot \nabla) \delta \boldsymbol{v} = - \nabla \delta p\\[10pt] \frac{\partial \delta \rho}{\partial t} + \overline{\rho} \nabla \cdot \delta \boldsymbol{v} = 0. \end{align}

By algebraic manipulation (using the product rule and the continuity equation multiplied by Ξ΄v\delta \boldsymbol{v}) and neglecting second‐order perturbations we obtain useful approximation

ρ‾ (Ξ΄vβ€‰β£β‹…βˆ‡) δvβ‰ˆβˆ’Ξ΄Οβˆ‚Ξ΄vβˆ‚t.\begin{align} \overline{\rho}\,(\delta \boldsymbol{v}\!\cdot\nabla)\,\delta \boldsymbol{v} \approx - \delta \rho \frac{\partial \delta \boldsymbol{v}}{\partial t}. \end{align}

As a result, the two middle terms in the first relation of (9) cancel and we obtain obtains

Οβ€Ύβˆ‚Ξ΄vβˆ‚t+βˆ‡β€‰Ξ΄p=0βˆ‚Ξ΄Οβˆ‚t+Οβ€Ύβˆ‡β‹…Ξ΄v=0.\begin{align} \overline{\rho} \frac{\partial \delta \boldsymbol{v}}{\partial t} + \nabla\,\delta p &= 0 \\[10pt] \frac{\partial \delta \rho}{\partial t} + \overline{\rho} \nabla \cdot \delta \boldsymbol{v} &= 0. \end{align}

Taking the divergence of the first relation and the time derivative of the second we get

Οβ€Ύβˆ‡β‹…βˆ‚Ξ΄vβˆ‚t+Δδp=0βˆ‚2Ξ΄Οβˆ‚t2+Οβ€Ύβˆ‡β‹…βˆ‚Ξ΄vβˆ‚t=0,\begin{align} \overline{\rho} \nabla \cdot \frac{\partial \delta \boldsymbol{v}}{\partial t} + \Delta \delta p &= 0 \\[10pt] \frac{\partial^2 \delta \rho}{\partial t^2} + \overline{\rho} \nabla \cdot \frac{\partial \delta \boldsymbol{v}}{\partial t} &= 0, \end{align}

which can be combined into a single equation

βˆ‚2Ξ΄Οβˆ‚t2βˆ’Ξ”Ξ΄p=0.\begin{align} \frac{\partial^2 \delta \rho}{\partial t^2} - \Delta \delta p = 0. \end{align}

With the isentropic approximation (3) the acoustic wave equation can be written as

Δδpβˆ’1c2βˆ‚2Ξ΄pβˆ‚t2=0,\begin{align} \Delta \delta p - \frac{1}{c^2} \frac{\partial^2 \delta p}{\partial t^2} = 0, \end{align}

with cc the speed of sound in the fluid and Ξ΄p\delta p the pressure variation around the mean pressure.

From now on we will write the Ξ΄p\delta p just as pp. To form the weak formulation we will multiply both sides by test function pβ€²p^{\prime} and integrate over the whole domain Ξ©\Omega.

∫Ω (Ξ”pβˆ’1c2βˆ‚2pβˆ‚t2)Β pβ€²Β dΞ©=0.\begin{align} \int_{\Omega}\ (\Delta p - \frac{1}{c^2}\frac{\partial^2 p}{\partial t^2})\ p^{\prime}\ d\Omega = 0. \end{align}

We can use the Leibniz rule for a nabla operator to rewrite the Laplace term.

βˆ«Ξ©Β βˆ‡β‹…(pβ€²βˆ‡p)Β dΞ©βˆ’βˆ«Ξ©Β βˆ‡pβ‹…βˆ‡pβ€²Β dΞ©βˆ’βˆ«Ξ©Β 1c2βˆ‚2pβˆ‚t2Β pβ€²Β dΞ©=0,\begin{align} \int_{\Omega}\ \nabla \cdot (p^{\prime} \nabla p)\ d\Omega - \int_{\Omega}\ \nabla p \cdot \nabla p^{\prime}\ d\Omega - \int_{\Omega}\ \frac{1}{c^2}\frac{\partial^2 p}{\partial t^2} \ p^{\prime}\ d\Omega = 0, \end{align}

and then apply the Divergence theorem on the divergence term to obtain the weak formulation

βˆ«Ξ“Β (βˆ‡pβ‹…n)Β pβ€²Β dΞ“βˆ’βˆ«Ξ©Β βˆ‡pβ‹…βˆ‡pβ€²Β dΞ©βˆ’βˆ«Ξ©Β 1c2βˆ‚2pβˆ‚t2Β pβ€²Β dΞ©=0.\begin{align} \int_{\Gamma}\ (\nabla p \cdot \boldsymbol{n})\ p^{\prime}\ d\Gamma - \int_{\Omega}\ \nabla p \cdot \nabla p^{\prime}\ d\Omega - \int_{\Omega}\ \frac{1}{c^2}\frac{\partial^2 p}{\partial t^2} \ p^{\prime}\ d\Omega = 0. \end{align}