Skip to content

Electromagnetic waves


Electric field

Strong formulation

We start from Maxwell’s equations along with the material relations

B=μH+BrD=εE+DrJ=σE+Jr .\begin{align} \boldsymbol{B} &= \boldsymbol{\mu} \boldsymbol{H} + \boldsymbol{B_r} \\[5pt] \boldsymbol{D} &= \boldsymbol{\varepsilon} \boldsymbol{E} + \boldsymbol{D_r} \\[5pt] \boldsymbol{J} &= \boldsymbol{\sigma} \boldsymbol{E} + \boldsymbol{J_r}\ . \end{align}

Where ε\boldsymbol{\varepsilon} is the electric permittivity tensor, μ\boldsymbol{\mu} is the magnetic permeability tensor and σ\boldsymbol{\sigma} is the electric conductivity tensor. Quantities Dr\boldsymbol{D_r}, Br\boldsymbol{B_r} and Jr\boldsymbol{J_r} are typically associated with remanent effects. We assume that quantities ϵ\boldsymbol{\epsilon}, μ\boldsymbol{\mu}, σ\boldsymbol{\sigma}, Dr\boldsymbol{D_r}, Br\boldsymbol{B_r} and Jr\boldsymbol{J_r} change slowly over time compared to the electromagnetic waves frequency. This allows to neglect their time derivatives.

Using this assumptions we can rewrite Faraday’s law as

×E=μHtμ1(×E)=Ht.\begin{align} \nabla \times \boldsymbol{E} &= -\boldsymbol{\mu} \frac{\partial \boldsymbol{H}}{\partial t} \\[10pt] \boldsymbol{\mu}^{-1} (\nabla \times \boldsymbol{E}) &= -\frac{\partial \boldsymbol{H}}{\partial t}. \end{align}

We apply the curl operator to both sides and assume the curl and time derivative can be interchanged using the time derivative of a curl identity

×(μ1(×E))=t(×H).\begin{align} \nabla \times (\boldsymbol{\mu}^{-1} (\nabla \times \boldsymbol{E})) &= -\frac{\partial}{\partial t} (\nabla \times \boldsymbol{H}). \end{align}

Substituting in the Ampère-Maxwell, material relations (2) and (3) and by rearranging we obtain

×(μ1(×E))+σEt+ε2Et2=0.\begin{align} \nabla \times (\boldsymbol{\mu}^{-1} (\nabla \times \boldsymbol{E})) + \boldsymbol{\sigma} \frac{\partial \boldsymbol{E}}{\partial t} + \boldsymbol{\varepsilon} \frac{\partial^2 \boldsymbol{E}}{\partial t^2} &= 0. \end{align}

If we assume isotropic material, all tensor quantities become scalars, the equation results in

×(1μ(×E))+σEt+ε2Et2=0.\begin{align} \nabla \times (\frac{1}{\mu} (\nabla \times \boldsymbol{E})) + \sigma \frac{\partial \boldsymbol{E}}{\partial t} + \varepsilon \frac{\partial^2 \boldsymbol{E}}{\partial t^2} &= 0. \end{align}

Weak formulation

To obtain the weak formulation of (7) we multiply the equation by a test function E\boldsymbol{E}' and integrating over the electromagnetic waves physics domain Ω\Omega:

Ω ×(μ1×E)EdΩ+Ω σEtEdΩ+Ω ϵ2Et2EdΩ=0.\begin{align} \int_\Omega\ \nabla \times (\boldsymbol{\mu}^{-1} \, \nabla \times \boldsymbol{E}) \cdot \boldsymbol{E}' \, d\Omega + \int_\Omega\ \boldsymbol{\sigma} \frac{\partial \, \boldsymbol{E}}{\partial t} \cdot \boldsymbol{E}' \, d\Omega + \int_\Omega\ \boldsymbol{\epsilon} \frac{\partial^2 \, \boldsymbol{E}}{\partial t^2} \cdot \boldsymbol{E}' \, d\Omega &= 0. \end{align}

We can rewrite the first term using the divergence of cross product identity

Ω ((μ1×E)×E) dΩ+Ω (μ1×E) (×E),\begin{align} \int_{\Omega}\ \nabla \cdot ((\boldsymbol{\mu}^{-1} \nabla \times \boldsymbol{E}) \times \boldsymbol{E}^{\prime})\ d\Omega + \int_{\Omega}\ (\boldsymbol{\mu}^{-1} \nabla \times \boldsymbol{E}) \cdot \ (\nabla \times \boldsymbol{E}^{\prime}), \end{align}

where the divergence theorem can rewritten using the divergence theorem

Γ ((μ1×E)×E)n dΓ+Ω (μ1×E) (×E) dΩ.\begin{align} \int_{\Gamma}\ ((\boldsymbol{\mu}^{-1} \nabla \times \boldsymbol{E}) \times \boldsymbol{E}^{\prime}) \cdot \boldsymbol{n}\ d\Gamma + \int_{\Omega}\ (\boldsymbol{\mu}^{-1} \nabla \times \boldsymbol{E}) \cdot \ (\nabla \times \boldsymbol{E}^{\prime})\ d\Omega. \end{align}

Substituting in the Faraday’s law and using the material relation (1) we obtain

Γ (Ht×E)n dΓ+Ω (μ1×E) (×E) dΩ.\begin{align} -\int_{\Gamma}\ (\frac{\partial \boldsymbol{H}}{\partial t} \times \boldsymbol{E}^{\prime}) \cdot \boldsymbol{n}\ d\Gamma + \int_{\Omega}\ (\boldsymbol{\mu}^{-1} \nabla \times \boldsymbol{E}) \cdot \ (\nabla \times \boldsymbol{E}^{\prime})\ d\Omega. \end{align}

Finally, by using the scalar triple product identity we derive the weak formulation

Γ (n×Ht)E dΓ+Ω (μ1×E) (×E) dΩ+Ω σEtE dΩ+Ω ϵ2Et2E dΩ=0.\begin{align} -\int_{\Gamma}\ (\boldsymbol{n} \times \frac{\partial \boldsymbol{H}}{\partial t}) \cdot \boldsymbol{E}^{\prime}\ d\Gamma + \int_{\Omega}\ (\boldsymbol{\mu}^{-1} \nabla \times \boldsymbol{E}) \cdot \ (\nabla \times \boldsymbol{E}^{\prime})\ d\Omega \\[10pt] + \int_{\Omega}\ \boldsymbol{\sigma} \frac{\partial \boldsymbol{E}}{\partial t} \cdot \boldsymbol{E}^{\prime}\ d\Omega + \int_{\Omega}\ \boldsymbol{\epsilon} \frac{\partial^2 \boldsymbol{E}}{\partial t^2} \cdot \boldsymbol{E}^{\prime}\ d\Omega &= 0. \end{align}