Skip to content

Magnetism A


Strong formulation

Our starting points along with the material relation are

B=0×H=JB=μH\begin{align} \nabla \cdot \boldsymbol{B} &= 0 \\[5pt] \nabla \times \boldsymbol{H} &= \boldsymbol{J} \\ \boldsymbol{B} &= \mu \boldsymbol{H} \end{align}

Since the magnetic field is divergence-free, we can use the identity for divergence of a curl and write the magnetic field as a curl of some vector A\boldsymbol{A}.

B=×A\begin{align} \boldsymbol{B} = \nabla \times \boldsymbol{A} \end{align}

Vector A\boldsymbol{A} is called a magnetic vector potential. By substituting (4) into (3) from (3), the material relation becomes

H=1μB=1μ(×A)\begin{align} \boldsymbol{H} = \frac{1}{\mu} \boldsymbol{B} = \frac{1}{\mu} \left( \nabla \times \boldsymbol{A} \right) \end{align}

Substituting (5) in (2), the strong form becomes

×H=1μ(×A)=J\begin{align} \nabla \times \boldsymbol{H} = \frac{1}{\mu} \left( \nabla \times \boldsymbol{A} \right) = \boldsymbol{J} \end{align}

Weak formulation

To obtain the weak form, we multiply the strong form with the test function A\boldsymbol{A}^\prime and integrated over the entire domain Ω\Omega. It is convenient to use the strong form as in (2) to derive the weak form here:

Ω (×HJ)A dΩ=0Ω (×H)A dΩΩ JA dΩ=0\begin{align} \int_{\Omega}\ (\nabla \times \boldsymbol{H} - \boldsymbol{J}) \cdot \boldsymbol{A^\prime}\ d \Omega = 0 \\[5pt] \int_{\Omega}\ (\nabla \times \boldsymbol{H}) \cdot \boldsymbol{A^\prime}\ d \Omega - \int_{\Omega}\ \boldsymbol{J} \cdot \boldsymbol{A^\prime}\ d \Omega = 0 \end{align}

Using the identity for divergence of a cross product on the first term we get

Ω (H×A) dΩ+Ω H(×A) dΩΩ JA dΩ=0\begin{align} \int_{\Omega}\ \nabla \cdot (\boldsymbol{H} \times \boldsymbol{A^\prime})\ d \Omega + \int_{\Omega}\ \boldsymbol{H} \cdot (\nabla \times \boldsymbol{A^\prime})\ d \Omega - \int_{\Omega}\ \boldsymbol{J} \cdot \boldsymbol{A^\prime}\ d \Omega = 0 \end{align}

Applying the divergence theorem on the first term we obtain

Γ (H×A)n dΓ+Ω H(×A) dΩΩ JA dΩ=0\begin{align} \int_{\Gamma}\ (\boldsymbol{H} \times \boldsymbol{A^\prime}) \cdot \boldsymbol{n}\ d \Gamma + \int_{\Omega}\ \boldsymbol{H} \cdot (\nabla \times \boldsymbol{A^\prime})\ d \Omega - \int_{\Omega}\ \boldsymbol{J} \cdot \boldsymbol{A^\prime}\ d \Omega = 0 \end{align}

Using the scalar triple product rule on the boundary term we get

Γ (n×H)A dΓ+Ω H(×A) dΩΩ JA dΩ=0\begin{align} \int_{\Gamma}\ (\boldsymbol{n} \times \boldsymbol{H}) \cdot \boldsymbol{A^\prime}\ d \Gamma + \int_{\Omega}\ \boldsymbol{H} \cdot (\nabla \times \boldsymbol{A^\prime})\ d \Omega - \int_{\Omega}\ \boldsymbol{J} \cdot \boldsymbol{A^\prime}\ d \Omega = 0 \end{align}

Subsituting (5) in the above second term and by rearranging we derive we get the final weak form as:

Ω 1μ (×A)(×A) dΩ+Ω  JA dΩ+Γ (n×H)A dΓ=0\begin{align} \int_{\Omega}\ \frac{1}{\mu}\ (\nabla \times \boldsymbol{A}) \cdot (\nabla \times \boldsymbol{A^\prime})\ d \Omega + \int_{\Omega}\ -\ \boldsymbol{J} \cdot \boldsymbol{A^\prime}\ d \Omega + \int_{\Gamma}\ (\boldsymbol{n} \times \boldsymbol{H}) \cdot \boldsymbol{A^\prime}\ d \Gamma = 0 \end{align}