Skip to content

RF 000 - Equations for electromagnetic waves

The electromagnetic waves physics solves for the wave propagation in Maxwell’s equations.

 \,
βˆ‡β‹…D=ρ\nabla \cdot \boldsymbol{D} = \rho

βˆ‡β‹…B=0\nabla \cdot \boldsymbol{B} = 0

βˆ‡Γ—E=βˆ’βˆ‚Bβˆ‚t\nabla \times \boldsymbol{E} = -\frac{\partial \boldsymbol{B}}{\partial t}

βˆ‡Γ—H=J+βˆ‚Dβˆ‚t\nabla \times \boldsymbol{H} = \boldsymbol{J} + \frac{\partial \boldsymbol{D}}{\partial t}
 \,
where E\boldsymbol{E} is the electric field [V/m], D\boldsymbol{D} is the electric displacement field [C/m²], H\boldsymbol{H} is the magnetic field [A/m], B\boldsymbol{B} is the magnetic flux density [T], ρ\rho is the electric charge density [C/m³] and J\boldsymbol{J} is the conduction current density [A/m²].

Without loss of generality, the materials can be modeled as D=Ο΅E+Dr\boldsymbol{D} = \boldsymbol{\epsilon} \boldsymbol{E} + \boldsymbol{D_r}, B=ΞΌH+Br\boldsymbol{B} = \boldsymbol{\mu} \boldsymbol{H} + \boldsymbol{B_r} and J=ΟƒE+Jr\boldsymbol{J} = \boldsymbol{\sigma} \boldsymbol{E} + \boldsymbol{J_r}, where Ο΅\boldsymbol{\epsilon} is the electric permittivity tensor [F/m], ΞΌ\boldsymbol{\mu} is the magnetic permeability tensor [H/m] and Οƒ\boldsymbol{\sigma} is the electric conductivity tensor [S/m]. Quantities Dr\boldsymbol{D_r}, Br\boldsymbol{B_r} and Jr\boldsymbol{J_r} are typically associated with remanent effects.

Using the above assumption, the last two equations can be rewritten as:

ΞΌβˆ’1β€‰βˆ‡Γ—E=βˆ’βˆ‚Hβˆ‚t\boldsymbol{\mu}^{-1} \, \nabla \times \boldsymbol{E} = -\frac{\partial \boldsymbol{H}}{\partial t}

βˆ‡Γ—H=ΟƒE+Jr+Ο΅βˆ‚Eβˆ‚t\nabla \times \boldsymbol{H} = \boldsymbol{\sigma} \boldsymbol{E} + \boldsymbol{J_r} + \boldsymbol{\epsilon} \frac{\partial \boldsymbol{E}}{\partial t}

Taking the curl of the first equation gives:

βˆ‡Γ—(ΞΌβˆ’1β€‰βˆ‡Γ—E)=βˆ’βˆ‚β€‰(βˆ‡Γ—H)βˆ‚t\nabla \times (\boldsymbol{\mu}^{-1} \, \nabla \times \boldsymbol{E}) = -\frac{\partial \, (\nabla \times \boldsymbol{H})}{\partial t}

Using the second equation, one gets the strong form of the wave equation used in Allsolve:

βˆ‡Γ—(ΞΌβˆ’1β€‰βˆ‡Γ—E)+Οƒβˆ‚β€‰Eβˆ‚t+Ο΅βˆ‚2 Eβˆ‚t2=0\nabla \times (\boldsymbol{\mu}^{-1} \, \nabla \times \boldsymbol{E}) + \boldsymbol{\sigma} \frac{\partial \, \boldsymbol{E}}{\partial t} + \boldsymbol{\epsilon} \frac{\partial^2 \, \boldsymbol{E}}{\partial t^2} = \boldsymbol{0}

The solver in Allsolve requires the weak form of the above equation. This is obtained by multiplying by a test function Eβ€²\boldsymbol{E}' and integrating over the electromagnetic waves physics domain Ξ©\Omega:

βˆ«Ξ©βˆ‡Γ—(ΞΌβˆ’1β€‰βˆ‡Γ—E)β‹…E′ dΞ©+βˆ«Ξ©Οƒβˆ‚β€‰Eβˆ‚tβ‹…E′ dΞ©+βˆ«Ξ©Ο΅βˆ‚2 Eβˆ‚t2β‹…E′ dΞ©=0\displaystyle \int_\Omega \nabla \times (\boldsymbol{\mu}^{-1} \, \nabla \times \boldsymbol{E}) \cdot \boldsymbol{E}' \, d\Omega + \displaystyle \int_\Omega \boldsymbol{\sigma} \frac{\partial \, \boldsymbol{E}}{\partial t} \cdot \boldsymbol{E}' \, d\Omega + \displaystyle \int_\Omega \boldsymbol{\epsilon} \frac{\partial^2 \, \boldsymbol{E}}{\partial t^2} \cdot \boldsymbol{E}' \, d\Omega = 0

which can be rewritten as:

∫Ω(ΞΌβˆ’1β€‰βˆ‡Γ—E)β‹…βˆ‡Γ—E′ dΞ©+βˆ«Ξ©Οƒβˆ‚β€‰Eβˆ‚tβ‹…E′ dΞ©+βˆ«Ξ©Ο΅βˆ‚2 Eβˆ‚t2β‹…E′ dΞ©β€‰βˆ’βˆ«βˆ‚Ξ©nΓ—βˆ‚Hβˆ‚tβ‹…E′ dΞ©=0\displaystyle \int_\Omega (\boldsymbol{\mu}^{-1} \, \nabla \times \boldsymbol{E}) \cdot \nabla \times \boldsymbol{E}' \, d\Omega + \displaystyle \int_\Omega \boldsymbol{\sigma} \frac{\partial \, \boldsymbol{E}}{\partial t} \cdot \boldsymbol{E}' \, d\Omega + \displaystyle \int_\Omega \boldsymbol{\epsilon} \frac{\partial^2 \, \boldsymbol{E}}{\partial t^2} \cdot \boldsymbol{E}' \, d\Omega \\\,\\- \displaystyle \int_{\partial\Omega} \boldsymbol{n} \times \frac{\partial \boldsymbol{H}}{\partial t} \cdot \boldsymbol{E}' \, d\Omega = 0

where n\boldsymbol{n} is the unit vector normal to the boundary βˆ‚Ξ©\partial \Omega of Ξ©\Omega.

The above formulation is what is actually solved in the electromagnetic waves physics. The last term is the Neumann trace, which allows for example to feed modes into a waveguide port.