The electromagnetic waves
physics solves for the wave propagation in Maxwellβs equations.
β \,
β β
D = Ο \nabla \cdot \boldsymbol{D} = \rho β β
D = Ο
β β
B = 0 \nabla \cdot \boldsymbol{B} = 0 β β
B = 0
β Γ E = β β B β t \nabla \times \boldsymbol{E} = -\frac{\partial \boldsymbol{B}}{\partial t} β Γ E = β β t β B β
β Γ H = J + β D β t \nabla \times \boldsymbol{H} = \boldsymbol{J} + \frac{\partial \boldsymbol{D}}{\partial t} β Γ H = J + β t β D β
β \,
where E \boldsymbol{E} E is the electric field [V/m], D \boldsymbol{D} D is the electric displacement field [C/mΒ²], H \boldsymbol{H} H is the magnetic field [A/m], B \boldsymbol{B} B is the magnetic flux density [T], Ο \rho Ο is the electric charge density [C/mΒ³] and J \boldsymbol{J} J is the conduction current density [A/mΒ²].
Without loss of generality, the materials can be modeled as D = Ο΅ E + D r \boldsymbol{D} = \boldsymbol{\epsilon} \boldsymbol{E} + \boldsymbol{D_r} D = Ο΅ E + D r β , B = ΞΌ H + B r \boldsymbol{B} = \boldsymbol{\mu} \boldsymbol{H} + \boldsymbol{B_r} B = ΞΌ H + B r β and J = Ο E + J r \boldsymbol{J} = \boldsymbol{\sigma} \boldsymbol{E} + \boldsymbol{J_r} J = Ο E + J r β , where Ο΅ \boldsymbol{\epsilon} Ο΅ is the electric permittivity tensor [F/m], ΞΌ \boldsymbol{\mu} ΞΌ is the magnetic permeability tensor [H/m] and Ο \boldsymbol{\sigma} Ο is the electric conductivity tensor [S/m]. Quantities D r \boldsymbol{D_r} D r β , B r \boldsymbol{B_r} B r β and J r \boldsymbol{J_r} J r β are typically associated with remanent effects.
Assumption of slow material properties changes
It is assumed that quantities Ο΅ \boldsymbol{\epsilon} Ο΅ , ΞΌ \boldsymbol{\mu} ΞΌ , Ο \boldsymbol{\sigma} Ο , D r \boldsymbol{D_r} D r β , B r \boldsymbol{B_r} B r β and J r \boldsymbol{J_r} J r β change slowly over time compared to the electromagnetic waves frequency. This allows to neglect their time derivatives.
Using the above assumption, the last two equations can be rewritten as:
ΞΌ β 1 β β Γ E = β β H β t \boldsymbol{\mu}^{-1} \, \nabla \times \boldsymbol{E} = -\frac{\partial \boldsymbol{H}}{\partial t} ΞΌ β 1 β Γ E = β β t β H β
β Γ H = Ο E + J r + Ο΅ β E β t \nabla \times \boldsymbol{H} = \boldsymbol{\sigma} \boldsymbol{E} + \boldsymbol{J_r} + \boldsymbol{\epsilon} \frac{\partial \boldsymbol{E}}{\partial t} β Γ H = Ο E + J r β + Ο΅ β t β E β
Taking the curl of the first equation gives:
β Γ ( ΞΌ β 1 β β Γ E ) = β β β ( β Γ H ) β t \nabla \times (\boldsymbol{\mu}^{-1} \, \nabla \times \boldsymbol{E}) = -\frac{\partial \, (\nabla \times \boldsymbol{H})}{\partial t} β Γ ( ΞΌ β 1 β Γ E ) = β β t β ( β Γ H ) β
Using the second equation, one gets the strong form of the wave equation used in Allsolve:
β Γ ( ΞΌ β 1 β β Γ E ) + Ο β β E β t + Ο΅ β 2 β E β t 2 = 0 \nabla \times (\boldsymbol{\mu}^{-1} \, \nabla \times \boldsymbol{E}) + \boldsymbol{\sigma} \frac{\partial \, \boldsymbol{E}}{\partial t} + \boldsymbol{\epsilon} \frac{\partial^2 \, \boldsymbol{E}}{\partial t^2} = \boldsymbol{0} β Γ ( ΞΌ β 1 β Γ E ) + Ο β t β E β + Ο΅ β t 2 β 2 E β = 0
The solver in Allsolve requires the weak form of the above equation. This is obtained by multiplying by a test function E β² \boldsymbol{E}' E β² and integrating over the electromagnetic waves physics domain Ξ© \Omega Ξ© :
β« Ξ© β Γ ( ΞΌ β 1 β β Γ E ) β
E β² β d Ξ© + β« Ξ© Ο β β E β t β
E β² β d Ξ© + β« Ξ© Ο΅ β 2 β E β t 2 β
E β² β d Ξ© = 0 \displaystyle \int_\Omega \nabla \times (\boldsymbol{\mu}^{-1} \, \nabla \times \boldsymbol{E}) \cdot \boldsymbol{E}' \, d\Omega + \displaystyle \int_\Omega \boldsymbol{\sigma} \frac{\partial \, \boldsymbol{E}}{\partial t} \cdot \boldsymbol{E}' \, d\Omega + \displaystyle \int_\Omega \boldsymbol{\epsilon} \frac{\partial^2 \, \boldsymbol{E}}{\partial t^2} \cdot \boldsymbol{E}' \, d\Omega = 0 β« Ξ© β β Γ ( ΞΌ β 1 β Γ E ) β
E β² d Ξ© + β« Ξ© β Ο β t β E β β
E β² d Ξ© + β« Ξ© β Ο΅ β t 2 β 2 E β β
E β² d Ξ© = 0
which can be rewritten as:
β« Ξ© ( ΞΌ β 1 β β Γ E ) β
β Γ E β² β d Ξ© + β« Ξ© Ο β β E β t β
E β² β d Ξ© + β« Ξ© Ο΅ β 2 β E β t 2 β
E β² β d Ξ© β β β« β Ξ© n Γ β H β t β
E β² β d Ξ© = 0 \displaystyle \int_\Omega (\boldsymbol{\mu}^{-1} \, \nabla \times \boldsymbol{E}) \cdot \nabla \times \boldsymbol{E}' \, d\Omega + \displaystyle \int_\Omega \boldsymbol{\sigma} \frac{\partial \, \boldsymbol{E}}{\partial t} \cdot \boldsymbol{E}' \, d\Omega + \displaystyle \int_\Omega \boldsymbol{\epsilon} \frac{\partial^2 \, \boldsymbol{E}}{\partial t^2} \cdot \boldsymbol{E}' \, d\Omega \\\,\\- \displaystyle \int_{\partial\Omega} \boldsymbol{n} \times \frac{\partial \boldsymbol{H}}{\partial t} \cdot \boldsymbol{E}' \, d\Omega = 0 β« Ξ© β ( ΞΌ β 1 β Γ E ) β
β Γ E β² d Ξ© + β« Ξ© β Ο β t β E β β
E β² d Ξ© + β« Ξ© β Ο΅ β t 2 β 2 E β β
E β² d Ξ© β β« β Ξ© β n Γ β t β H β β
E β² d Ξ© = 0
where n \boldsymbol{n} n is the unit vector normal to the boundary β Ξ© \partial \Omega β Ξ© of Ξ© \Omega Ξ© .
The above formulation is what is actually solved in the electromagnetic waves physics. The last term is the Neumann trace, which allows for example to feed modes into a waveguide port.