Skip to content

SC 001 - HTS tape AC loss

In this step-by-step tutorial, AC power loss in a high-temperature superconducting (HTS) tape is simulated.

HTS materials are defined as having a relatively high critical temperature of above 77 K. 1

Model definition

The tape model is multi-layered, with the superconducting YBCO (Yttrium barium copper oxide) layer taking up only a small part of the tape cross-section. Hastelloy is used as substrate, which forms the thick middle layer of the tape. Copper is used on the outer layer as a stabilizer.

A reference image of the tape cross-section (not to scale) is depicted below.

Tutorial image

Model geometry

ElementDimensions
air cylinderradius = 8 cm
tapewidth = 4 mm, height = 95 μm, length = 1 cm
copper layerthickness = 20 μm
silver layerthickness = 2 μm
YBCO layerthickness = 1 μm
hastelloy layerthickness = 50 μm
domainlength = 1 cm
YBCO cross-sectionAYBCOA_{\rm YBCO} = 3.961093.96 \cdot 10^{-9}

Material Data

Magnetic permeability (μ\mu)

  • all domains: μ0\mu_0

Electric resistivity (ρ\rho)

  • Hastelloy: 106 Ω10^{-6}~\Omegam
  • Silver: 108 Ω10^{-8}~\Omegam
  • Copper: 108 Ω10^{-8}~\Omegam
  • YBCO:
    • ρ=EcJc(JJc)n1\rho=\frac{E_c}{J_c}\left(\frac{||J||}{J_c} \right)^{n-1}
      • Ec=100E_c = 100 μV/m
      • n=30.5n=30.5
      • Jc=2.85×1010J_c=2.85\times 10^{10} [A/m2^2]
      • Ic=JcAYBCOI_c=J_c\cdot A_{\rm YBCO}
    • EE0+EJ(JJ0)E\approx E^0+\frac{\partial E}{\partial J}(J-J^0)

Inputs - case 1

  • Frequency f=50f=50 Hz

  • Operation current Iop(t)=0.8 Icsin(2πft)I_{\rm op}(t) = 0.8 ~ I_c \cdot \sin (2 \pi f t)

  • External magnetic flux density Bext(t)=0B_{\rm ext}(t)=0 [T]

Inputs - case 2

  • Frequency f=50f=50 Hz

  • Operation current Iop(t)=0I_{\rm op}(t)=0 A

  • External magnetic flux density Bext(t)=20sin(2πft)B_{\rm ext}(t) = 20 \cdot \sin (2 \pi f t) [mT]

Output results

  • Joule losses in the YBCO region, and in the normalconducting region
Pi(t)=ΩiE(t)J(t) dΩ\begin{equation} P_i(t)=\int_{\Omega_{i}}\boldsymbol{E}(t)\cdot \boldsymbol{J}(t)~\rm{d}\Omega \end{equation}
  • Field visualizations

Step-by-step guide

Here you’ll find a detailed step-by-step tutorial on how to simulate AC Loss in an HTS tape in Quanscient Allsolve.

Step 1 - Create the project and import geometry

  1. Create a new project and name it as HTS tape demo, for example.

  2. Import the model as a mesh file. You can download the file here: htstape.msh

The air cylinder takes up most of the model view, with the outline of the small tape box volume visible in the middle.

Tutorial image

Step 2 - Define shared regions

  1. Go to the Properties section.

  2. Define shared regions:

    Region nameRegion typeTarget tags
    airVolume5
    copperVolume6
    silverVolume1, 4
    hastelloyVolume2
    ybcoVolume3
    normalconductingVolume1, 2, 4, 6

Step 3 - Define the materials

  1. Assign the Air, Silver, Copper and YBCO materials to their corresponding shared regions.

  2. In Silver and Copper material properties, change Electric conductivity to 1e8.

  3. Create the new material Hastelloy and add its properties:

    Material nameColorTarget
    HastelloyDark greyhastelloy region
    Material propertyValue
    Electric conductivity1e6
    Magnetic permeabilitymu0
  4. (Optional) Change the YBCO material color to purple in order to distinguish it from hastelloy.

Finished materials:

Tutorial image

Step 4 - Define variables & functions

  1. Edit predefined variables:

    NameUpdated expression
    YBCO_Jc2.85e10
    YBCO_n30.5
  2. Define new variables:

    NameDescriptionExpression
    freqFrequency [Hz]50
    BextExternal magnetic flux density [T]0
    AybcoYBCO layer cross-section area [m^2]3.96e-9
    IopOperating current [A]0.8 * YBCO_Jc * Aybco * sin(2 * pi * freq * t)

Step 5 - Define physics and boundary conditions

Go to the Physics section.

Add the Magnetism φ and Magnetism H physics before moving on to set up their interactions.

Physics 1 - Magnetism φ

  1. Set the Magnetism φ target:

    PhysicsTarget
    Magnetism φair region
  2. Add a constraint interaction to Magnetism φ:

    Interaction nameInteraction typeTargetValue
    ConstraintConstraintpoint at the outer edge of the air cylinder (point 26)0
  3. Add an External field interaction to Magnetism φ:

    Interaction nameInteraction typeTargetValue
    External fieldExternal fieldouter surface of the air cylinder (surface 26)[0; Bext; 0]

    Tutorial image

  4. Add a Lump I/V cut interaction to Magnetism φ:

    Interaction nameInteraction typeTargetActuation modeCurrent
    Lump I/V cutLump I/V cuta loop around the tape cross-section (curves 46, 48, 50, 51)CurrentIop

    Tutorial image

Physics 2 - Magnetism H

  1. Set the Magnetism H target:

    PhysicsTarget
    Magnetism HAll volumes, except the air cylinder (1 - 4, 6)
  2. Add H-φ coupling to Magnetism H.

Step 6 - Select simulation options

  1. Go to the Simulations section.

  2. Add a new simulation.

  3. Set Analysis Type to Transient.

  4. Select timestepping options:

    Timestep algorithmStart time [s]End time [s]Timestep size [s]
    Implicit Euler01/freq1/freq/50
  5. Select the imported mesh as the mesh for your simulation.

Step 7 - Add simulation outputs

  1. Add custom value outputs for joule loss integrals:

    NameOutput expression
    YBCO lossintegrate(reg.ybco, transpose(E)*j, 4)
    Normalconducting lossintegrate(reg.normalconducting, transpose(E)*j, 4)
  2. Add a custom value output for net current:

    NameOutput expression
    Itotlump.I
  3. Add the current density j field output.

  4. Toggle Skin only on the j field output.

Step 8 - Modify the simulation script & run

  1. Open the simulation Script.

  2. Enable Scripting mode.

  3. Replace the first line of the autogenerated magnetism H formulation with the following Newton-Raphson linearization:

    rho = 1 / par.sigma(df.j)
    dedj = rho * qs.eye(3) + (expr.YBCO_n - 1.0) * rho / qs.max(df.j * df.j, 1e-40) * df.j * qs.transpose(df.j)
    dofe = rho * df.j + dedj * (qs.curl(qs.dof(fld.H)) + var.curl_dof_Hs - qs.curl(fld.H) - var.curl_Hs)
    form += qs.integral(reg.ybco, dofe * (qs.curl(qs.tf(fld.H)) - var.curl_tf_Hs))
    form += qs.integral(reg.normalconducting, qs.inverse(par.sigma(df.j)) * (qs.curl(qs.dof(fld.H)) + var.curl_dof_Hs) * (qs.curl(qs.tf(fld.H)) - var.curl_tf_Hs))

    Example image

  4. Save the script.

  5. Run the simulation.

Step 9 - Plot results

Add plots to see value output results.

  • The YBCO loss forms two distinct peaks:

    Example image

  • The Normalconducting loss has a similar shape but at a much smaller scale:

    Example image

References

Footnotes

  1. https://en.wikipedia.org/wiki/High-temperature_superconductivity