Maxwellβs equations
β β
D = Ο \nabla \cdot \boldsymbol{D} = \rho β β
D = Ο β β
B = 0 \nabla \cdot \boldsymbol{B} = 0 β β
B = 0 β Γ E = β β B β t \nabla \times \boldsymbol{E} = -\frac{\partial \boldsymbol{B}}{\partial t} β Γ E = β β t β B β β Γ H = J + β D β t \nabla \times \boldsymbol{H} = \boldsymbol{J} + \frac{\partial \boldsymbol{D}}{\partial t} β Γ H = J + β t β D β
In case of non-zero constant current flow Ampere-Maxwell law states
β Γ H = J + β D β t \begin{align}
\nabla \times \boldsymbol{H}
= \boldsymbol{J}
+ \frac{\partial \boldsymbol{D}}{\partial t}
\end{align} β Γ H = J + β t β D β β β
Taking the divergence of both sides we get
β β
( β Γ H ) = β β
( J + β D β t ) 0 = β β
( J + β D β t ) \begin{align}
\nabla \cdot (\nabla \times \boldsymbol{H})
&= \nabla \cdot (\boldsymbol{J}
+ \frac{\partial \boldsymbol{D}}{\partial t}) \\[10pt]
0
&= \nabla \cdot (\boldsymbol{J}
+ \frac{\partial \boldsymbol{D}}{\partial t}) \\[5pt]
\end{align} β β
( β Γ H ) 0 β = β β
( J + β t β D β ) = β β
( J + β t β D β ) β β
since the divergence of a curl is zero.
Under the assumption of constant current flow (or approximating a slowly varying current), the time derivative of the electric displacement field β D β t \frac{\partial \boldsymbol{D}}{\partial t} β t β D β equals zero.
β β
J = 0 \begin{align}
\nabla \cdot \boldsymbol{J} = 0
\end{align} β β
J = 0 β β
This indicates that the current flow is non-divergent.
We can write a current density using Ohmβs law in differential form.
J = Ο E \begin{align}
\boldsymbol{J} &= \sigma \boldsymbol{E}
\end{align} J β = Ο E β β
Where Ο \sigma Ο is the conductivity of the material.
β β
( Ο E ) = 0 β β
( β Ο β v ) = 0 β β
( Ο β v ) = 0 \begin{align}
\nabla \cdot (\sigma \boldsymbol{E}) &= 0 \\[5pt]
\nabla \cdot (- \sigma \nabla v) &= 0 \\[5pt]
\nabla \cdot (\sigma \nabla v) &= 0 \\[5pt]
\end{align} β β
( Ο E ) β β
( β Ο β v ) β β
( Ο β v ) β = 0 = 0 = 0 β β
Resulting in Laplaceβs equation.
The partial differential equation is multiplied by the test function v β² v^{\prime} v β² and integrated over the whole domain Ξ© \Omega Ξ© .
β« Ξ© β
β ( β β
( Ο β v ) ) β
β v β² β
β d Ξ© = 0 \begin{align}
\int_{\Omega}\; (\nabla \cdot (\sigma \nabla v))\; v^{\prime}\; d \Omega = 0
\end{align} β« Ξ© β ( β β
( Ο β v )) v β² d Ξ© = 0 β β
Applying the Leibniz rule for nabla operator we get
β« Ξ© β
β β β
( v β² β
β Ο β v ) β
β d Ξ© + β« Ξ© β
β β ( β v β² β
Ο β v ) β
β d Ξ© = 0 \begin{align}
\int_{\Omega}\; \nabla \cdot (v^{\prime}\; \sigma \nabla v)\; d \Omega
+ \int_{\Omega}\; -(\nabla v^{\prime} \cdot \sigma \nabla v)\; d \Omega
= 0
\end{align} β« Ξ© β β β
( v β² Ο β v ) d Ξ© + β« Ξ© β β ( β v β² β
Ο β v ) d Ξ© = 0 β β
For the first term we can use the Divergence theorem
β« Ξ β
β ( v β² β
β Ο β v ) β
n β
β d Ξ + β« Ξ© β
β β ( β v β² β
Ο β v ) β
β d Ξ© = 0 \begin{align}
\int_{\Gamma}\; (v^{\prime}\; \sigma \nabla v) \cdot \boldsymbol{n}\; d \Gamma
+ \int_{\Omega}\; -(\nabla v^{\prime} \cdot \sigma \nabla v)\; d \Omega
= 0
\end{align} β« Ξ β ( v β² Ο β v ) β
n d Ξ + β« Ξ© β β ( β v β² β
Ο β v ) d Ξ© = 0 β β
Rearranging the terms and using relation E = β β v \boldsymbol{E} = - \nabla v E = β β v we obtain
β« Ξ© β
β β ( β v β² β
Ο β v ) β
β d Ξ© + β« Ξ β
β β Ο E β
n β
β v β² β
β d Ξ = 0 \begin{align}
\int_{\Omega}\; -(\nabla v^{\prime} \cdot \sigma \nabla v)\; d \Omega
+ \int_{\Gamma}\; -\sigma \boldsymbol{E} \cdot \boldsymbol{n}\; v^{\prime}\; d \Gamma
= 0
\end{align} β« Ξ© β β ( β v β² β
Ο β v ) d Ξ© + β« Ξ β β Ο E β
n v β² d Ξ = 0 β β
Usign relation J = Ο E \boldsymbol{J} = \sigma \boldsymbol{E} J = Ο E results in
β« Ξ© β
β β ( β v β² β
Ο β v ) β
β d Ξ© + β« Ξ β
β β J β
n β
β v β² β
β d Ξ = 0 \begin{align}
\int_{\Omega}\; -(\nabla v^{\prime} \cdot \sigma \nabla v)\; d \Omega
+ \int_{\Gamma}\; -\boldsymbol{J} \cdot \boldsymbol{n}\; v^{\prime}\; d \Gamma
= 0
\end{align} β« Ξ© β β ( β v β² β
Ο β v ) d Ξ© + β« Ξ β β J β
n v β² d Ξ = 0 β β