Skip to content

Current flow (v-formulation)


Strong formulation

In case of non-zero constant current flow Ampere-Maxwell law states

βˆ‡Γ—H=J+βˆ‚Dβˆ‚t\begin{align} \nabla \times \boldsymbol{H} = \boldsymbol{J} + \frac{\partial \boldsymbol{D}}{\partial t} \end{align}

Taking the divergence of both sides we get

βˆ‡β‹…(βˆ‡Γ—H)=βˆ‡β‹…(J+βˆ‚Dβˆ‚t)0=βˆ‡β‹…(J+βˆ‚Dβˆ‚t)\begin{align} \nabla \cdot (\nabla \times \boldsymbol{H}) &= \nabla \cdot (\boldsymbol{J} + \frac{\partial \boldsymbol{D}}{\partial t}) \\[10pt] 0 &= \nabla \cdot (\boldsymbol{J} + \frac{\partial \boldsymbol{D}}{\partial t}) \\[5pt] \end{align}

since the divergence of a curl is zero. Under the assumption of constant current flow (or approximating a slowly varying current), the time derivative of the electric displacement field βˆ‚Dβˆ‚t\frac{\partial \boldsymbol{D}}{\partial t} equals zero.

βˆ‡β‹…J=0\begin{align} \nabla \cdot \boldsymbol{J} = 0 \end{align}

This indicates that the current flow is non-divergent. We can write a current density using Ohm’s law in differential form.

J=ΟƒE\begin{align} \boldsymbol{J} &= \sigma \boldsymbol{E} \end{align}

Where Οƒ\sigma is the conductivity of the material.

βˆ‡β‹…(ΟƒE)=0βˆ‡β‹…(βˆ’Οƒβˆ‡v)=0βˆ‡β‹…(Οƒβˆ‡v)=0\begin{align} \nabla \cdot (\sigma \boldsymbol{E}) &= 0 \\[5pt] \nabla \cdot (- \sigma \nabla v) &= 0 \\[5pt] \nabla \cdot (\sigma \nabla v) &= 0 \\[5pt] \end{align}

Resulting in Laplace’s equation.

Weak formulation

The partial differential equation is multiplied by the test function vβ€²v^{\prime} and integrated over the whole domain Ξ©\Omega.

βˆ«Ξ©β€…β€Š(βˆ‡β‹…(Οƒβˆ‡v))β€…β€Švβ€²β€…β€ŠdΞ©=0\begin{align} \int_{\Omega}\; (\nabla \cdot (\sigma \nabla v))\; v^{\prime}\; d \Omega = 0 \end{align}

Applying the Leibniz rule for nabla operator we get

βˆ«Ξ©β€…β€Šβˆ‡β‹…(vβ€²β€…β€ŠΟƒβˆ‡v)β€…β€ŠdΞ©+βˆ«Ξ©β€…β€Šβˆ’(βˆ‡vβ€²β‹…Οƒβˆ‡v)β€…β€ŠdΞ©=0\begin{align} \int_{\Omega}\; \nabla \cdot (v^{\prime}\; \sigma \nabla v)\; d \Omega + \int_{\Omega}\; -(\nabla v^{\prime} \cdot \sigma \nabla v)\; d \Omega = 0 \end{align}

For the first term we can use the Divergence theorem

βˆ«Ξ“β€…β€Š(vβ€²β€…β€ŠΟƒβˆ‡v)β‹…nβ€…β€ŠdΞ“+βˆ«Ξ©β€…β€Šβˆ’(βˆ‡vβ€²β‹…Οƒβˆ‡v)β€…β€ŠdΞ©=0\begin{align} \int_{\Gamma}\; (v^{\prime}\; \sigma \nabla v) \cdot \boldsymbol{n}\; d \Gamma + \int_{\Omega}\; -(\nabla v^{\prime} \cdot \sigma \nabla v)\; d \Omega = 0 \end{align}

Rearranging the terms and using relation E=βˆ’βˆ‡v\boldsymbol{E} = - \nabla v we obtain

βˆ«Ξ©β€…β€Šβˆ’(βˆ‡vβ€²β‹…Οƒβˆ‡v)β€…β€ŠdΞ©+βˆ«Ξ“β€…β€Šβˆ’ΟƒEβ‹…nβ€…β€Švβ€²β€…β€ŠdΞ“=0\begin{align} \int_{\Omega}\; -(\nabla v^{\prime} \cdot \sigma \nabla v)\; d \Omega + \int_{\Gamma}\; -\sigma \boldsymbol{E} \cdot \boldsymbol{n}\; v^{\prime}\; d \Gamma = 0 \end{align}

Usign relation J=ΟƒE\boldsymbol{J} = \sigma \boldsymbol{E} results in

βˆ«Ξ©β€…β€Šβˆ’(βˆ‡vβ€²β‹…Οƒβˆ‡v)β€…β€ŠdΞ©+βˆ«Ξ“β€…β€Šβˆ’Jβ‹…nβ€…β€Švβ€²β€…β€ŠdΞ“=0\begin{align} \int_{\Omega}\; -(\nabla v^{\prime} \cdot \sigma \nabla v)\; d \Omega + \int_{\Gamma}\; -\boldsymbol{J} \cdot \boldsymbol{n}\; v^{\prime}\; d \Gamma = 0 \end{align}