Skip to content

Electrostatics (v-formulation)

Strong formulation

The Electrostatics v-formulation is derived based on the electrostatic approximation. As a starting point, we have the conditions

Bt=0Et=0.\begin{align} \frac{\partial \boldsymbol{B}}{\partial t} &= 0 \\[10pt] \frac{\partial \boldsymbol{E}}{\partial t} &= 0. \end{align}

Now with these conditions and the Maxwell’s equations, we have

εE=ρ×E=0,\begin{align} \nabla \cdot \varepsilon \boldsymbol{E} &= \rho \\[5pt] \nabla \times \boldsymbol{E} &= 0, \end{align}

where (3) is Gauss’s law and (4) is Faraday’s law. From Faraday’s law we see that curl of E\boldsymbol{E} is zero. Hence E\boldsymbol{E} is a conservative field, which means that there exists a scalar function vv such that

E=v,\begin{align} \boldsymbol{E} = -\nabla v, \end{align}

where vv is a scalar potential of the vector field E\boldsymbol{E}. By substituting (6) into Gauss’s law we obtain a Poisson’s equation

(εv)=ρ(εv)+ρ=0.\begin{align} \nabla \cdot (-\varepsilon \nabla v) &= \rho \\[5pt] \nabla \cdot (\varepsilon \nabla v) + \rho &= 0. \end{align}

Weak formulation

The partial differential equation is multiplied by the test function vv^{\prime} and integrated over the whole domain Ω\Omega to get

Ω  ((εv))  v  dΩ+Ω  ρ  v  dΩ=0.\begin{align} \int_{\Omega}\; (\nabla \cdot (\varepsilon \nabla v))\; v^{\prime}\; d \Omega + \int_{\Omega}\; \rho\; v^{\prime}\; d \Omega = 0. \end{align}

Applying the Leibniz rule for nabla operator we get

Ω  (v  εv)  dΩΩ  (vεv)  dΩ+Ω  ρ  v  dΩ=0.\begin{align} \int_{\Omega}\; \nabla \cdot (v^{\prime}\; \varepsilon \nabla v)\; d \Omega - \int_{\Omega}\; (\nabla v^{\prime} \cdot \varepsilon \nabla v)\; d \Omega + \int_{\Omega}\; \rho\; v^{\prime}\; d \Omega = 0. \end{align}

For the first term we can use the Divergence theorem

Γ  n(v  εv)  dΩΩ  (vεv)  dΩ+Ω  ρ  v  dΩ=0.\begin{align} \int_{\Gamma}\; \boldsymbol{n} \cdot (v^{\prime}\; \varepsilon \nabla v)\; d \Omega - \int_{\Omega}\; (\nabla v^{\prime} \cdot \varepsilon \nabla v)\; d \Omega + \int_{\Omega}\; \rho\; v^{\prime}\; d \Omega = 0. \end{align}

Rearranging the terms and using relation E=v\boldsymbol{E} = - \nabla v on the Neumann term, we obtain

Ω  (εvv)  dΩ+Γ  (εEn)  v  dΓ+Ω  ρ  v  dΩ.\begin{align} \int_{\Omega}\; (-\varepsilon \nabla v \cdot \nabla v^{\prime})\; d \Omega + \int_{\Gamma}\; (-\varepsilon \boldsymbol{E} \cdot \boldsymbol{n})\; v^{\prime} \; d \Gamma + \int_{\Omega}\; \rho\; v^{\prime}\; d \Omega. \end{align}