Skip to content

Electrostatics (v-formulation)


Strong formulation

The formulation is derived based on the electrostatics approximation. Our starting points are Maxwell’s equations and conditions for

βˆ‚Bβˆ‚t=0βˆ‚Eβˆ‚t=0\begin{align} \frac{\partial \boldsymbol{B}}{\partial t} &= 0 \\[10pt] \frac{\partial \boldsymbol{E}}{\partial t} &= 0 \end{align}

Under these conditions Maxwell’s equations are reduced to

βˆ‡β‹…Ξ΅E=qVβˆ‡Γ—E=0\begin{align} \nabla \cdot \varepsilon \boldsymbol{E} &= q_V \\[5pt] \nabla \times \boldsymbol{E} &= 0\\ \end{align}

where (3) is Gauss’s law and (4) is Faraday’s law. From Faraday’s law we can see that curl of E\boldsymbol{E} is zero, hence E\boldsymbol{E} is a conservative field. That means, that there exists a function v:R3β†’Rv: \mathbb{R}^3 \rightarrow \mathbb{R} such that:

E=βˆ’βˆ‡v\begin{align} \boldsymbol{E} = -\nabla v \end{align}

where vv is a scalar potential of the vector field E\boldsymbol{E}. By substituting (6) into Gauss’s law we obtain a Poisson’s equation:

βˆ‡β‹…(βˆ’Ξ΅βˆ‡v)=qVβˆ‡β‹…(Ξ΅βˆ‡v)+qV=0\begin{align} \nabla \cdot (-\varepsilon \nabla v) &= q_V \\[5pt] \nabla \cdot (\varepsilon \nabla v) + q_V &= 0 \\[5pt] \end{align}

Weak formulation

The partial differential equation is multiplied by the test function vβ€²v^{\prime} and integrated over the whole domain Ξ©\Omega.

βˆ«Ξ©β€…β€Š(βˆ‡β‹…(Ξ΅βˆ‡v))β€…β€Švβ€²β€…β€ŠdΞ©+βˆ«Ξ©β€…β€ŠqVβ€…β€Švβ€²β€…β€ŠdΞ©=0\begin{align} \int_{\Omega}\; (\nabla \cdot (\varepsilon \nabla v))\; v^{\prime}\; d \Omega + \int_{\Omega}\; q_V\; v^{\prime}\; d \Omega = 0 \end{align}

Applying the Leibniz rule for nabla operator we get

βˆ«Ξ©β€…β€Šβˆ‡β‹…(vβ€²β€…β€ŠΞ΅βˆ‡v)β€…β€ŠdΞ©βˆ’βˆ«Ξ©β€…β€Š(βˆ‡vβ€²β‹…Ξ΅βˆ‡v)β€…β€ŠdΞ©+βˆ«Ξ©β€…β€ŠqVβ€…β€Švβ€²β€…β€ŠdΞ©\begin{align} \int_{\Omega}\; \nabla \cdot (v^{\prime}\; \varepsilon \nabla v)\; d \Omega - \int_{\Omega}\; (\nabla v^{\prime} \cdot \varepsilon \nabla v)\; d \Omega + \int_{\Omega}\; q_V\; v^{\prime}\; d \Omega \end{align}

For the first term we can use the Divergence theorem

βˆ«Ξ“β€…β€Šnβ‹…(vβ€²β€…β€ŠΞ΅βˆ‡v)β€…β€ŠdΞ©βˆ’βˆ«Ξ©β€…β€Š(βˆ‡vβ€²β‹…Ξ΅βˆ‡v)β€…β€ŠdΞ©+βˆ«Ξ©β€…β€ŠqVβ€…β€Švβ€²β€…β€ŠdΞ©\begin{align} \int_{\Gamma}\; \boldsymbol{n} \cdot (v^{\prime}\; \varepsilon \nabla v)\; d \Omega - \int_{\Omega}\; (\nabla v^{\prime} \cdot \varepsilon \nabla v)\; d \Omega + \int_{\Omega}\; q_V\; v^{\prime}\; d \Omega \end{align}

Rearranging the terms and using relation E=βˆ’βˆ‡v\boldsymbol{E} = - \nabla v we obtain

βˆ’βˆ«Ξ©β€…β€Š(βˆ‡vβ‹…Ξ΅βˆ‡vβ€²)β€…β€ŠdΞ©+βˆ«Ξ“β€…β€Šβˆ’Ξ΅Eβ‹…nβ€…β€Švβ€²β€…β€ŠdΞ“+βˆ«Ξ©β€…β€ŠqVβ€…β€Švβ€²β€…β€ŠdΞ©\begin{align} - \int_{\Omega}\; (\nabla v \cdot \varepsilon \nabla v^{\prime})\; d \Omega + \int_{\Gamma}\; -\varepsilon \boldsymbol{E} \cdot \boldsymbol{n}\; v^{\prime} \; d \Gamma + \int_{\Omega}\; q_V\; v^{\prime}\; d \Omega \end{align}