Maxwellβs equations
β β
D = Ο \nabla \cdot \boldsymbol{D} = \rho β β
D = Ο β β
B = 0 \nabla \cdot \boldsymbol{B} = 0 β β
B = 0 β Γ E = β β B β t \nabla \times \boldsymbol{E} = -\frac{\partial \boldsymbol{B}}{\partial t} β Γ E = β β t β B β β Γ H = J + β D β t \nabla \times \boldsymbol{H} = \boldsymbol{J} + \frac{\partial \boldsymbol{D}}{\partial t} β Γ H = J + β t β D β
The formulation is derived based on the electrostatics approximation.
Our starting points are Maxwellβs equations and conditions for
β B β t = 0 β E β t = 0 \begin{align}
\frac{\partial \boldsymbol{B}}{\partial t} &= 0 \\[10pt]
\frac{\partial \boldsymbol{E}}{\partial t} &= 0
\end{align} β t β B β β t β E β β = 0 = 0 β β
Under these conditions Maxwellβs equations are reduced to
β β
Ξ΅ E = q V β Γ E = 0 \begin{align}
\nabla \cdot \varepsilon \boldsymbol{E} &= q_V \\[5pt]
\nabla \times \boldsymbol{E} &= 0\\
\end{align} β β
Ξ΅ E β Γ E β = q V β = 0 β β
where (3) is Gaussβs law and (4) is Faradayβs law. From Faradayβs law we can see that curl of E \boldsymbol{E} E is zero, hence E \boldsymbol{E} E is a conservative field. That means, that there exists a function v : R 3 β R v: \mathbb{R}^3 \rightarrow \mathbb{R} v : R 3 β R such that:
E = β β v \begin{align}
\boldsymbol{E} = -\nabla v
\end{align} E = β β v β β
where v v v is a scalar potential of the vector field E \boldsymbol{E} E .
By substituting (6) into Gaussβs law we obtain a Poissonβs equation:
β β
( β Ξ΅ β v ) = q V β β
( Ξ΅ β v ) + q V = 0 \begin{align}
\nabla \cdot (-\varepsilon \nabla v) &= q_V \\[5pt]
\nabla \cdot (\varepsilon \nabla v) + q_V &= 0 \\[5pt]
\end{align} β β
( β Ξ΅ β v ) β β
( Ξ΅ β v ) + q V β β = q V β = 0 β β
The partial differential equation is multiplied by the test function v β² v^{\prime} v β² and integrated over the whole domain Ξ© \Omega Ξ© .
β« Ξ© β
β ( β β
( Ξ΅ β v ) ) β
β v β² β
β d Ξ© + β« Ξ© β
β q V β
β v β² β
β d Ξ© = 0 \begin{align}
\int_{\Omega}\; (\nabla \cdot (\varepsilon \nabla v))\; v^{\prime}\; d \Omega
+ \int_{\Omega}\; q_V\; v^{\prime}\; d \Omega
= 0
\end{align} β« Ξ© β ( β β
( Ξ΅ β v )) v β² d Ξ© + β« Ξ© β q V β v β² d Ξ© = 0 β β
Applying the Leibniz rule for nabla operator we get
β« Ξ© β
β β β
( v β² β
β Ξ΅ β v ) β
β d Ξ© β β« Ξ© β
β ( β v β² β
Ξ΅ β v ) β
β d Ξ© + β« Ξ© β
β q V β
β v β² β
β d Ξ© \begin{align}
\int_{\Omega}\; \nabla \cdot (v^{\prime}\; \varepsilon \nabla v)\; d \Omega
- \int_{\Omega}\; (\nabla v^{\prime} \cdot \varepsilon \nabla v)\; d \Omega
+ \int_{\Omega}\; q_V\; v^{\prime}\; d \Omega
\end{align} β« Ξ© β β β
( v β² Ξ΅ β v ) d Ξ© β β« Ξ© β ( β v β² β
Ξ΅ β v ) d Ξ© + β« Ξ© β q V β v β² d Ξ© β β
For the first term we can use the Divergence theorem
β« Ξ β
β n β
( v β² β
β Ξ΅ β v ) β
β d Ξ© β β« Ξ© β
β ( β v β² β
Ξ΅ β v ) β
β d Ξ© + β« Ξ© β
β q V β
β v β² β
β d Ξ© \begin{align}
\int_{\Gamma}\; \boldsymbol{n} \cdot (v^{\prime}\; \varepsilon \nabla v)\; d \Omega
- \int_{\Omega}\; (\nabla v^{\prime} \cdot \varepsilon \nabla v)\; d \Omega
+ \int_{\Omega}\; q_V\; v^{\prime}\; d \Omega
\end{align} β« Ξ β n β
( v β² Ξ΅ β v ) d Ξ© β β« Ξ© β ( β v β² β
Ξ΅ β v ) d Ξ© + β« Ξ© β q V β v β² d Ξ© β β
Rearranging the terms and using relation E = β β v \boldsymbol{E} = - \nabla v E = β β v we obtain
β β« Ξ© β
β ( β v β
Ξ΅ β v β² ) β
β d Ξ© + β« Ξ β
β β Ξ΅ E β
n β
β v β² β
β d Ξ + β« Ξ© β
β q V β
β v β² β
β d Ξ© \begin{align}
- \int_{\Omega}\; (\nabla v \cdot \varepsilon \nabla v^{\prime})\; d \Omega
+ \int_{\Gamma}\; -\varepsilon \boldsymbol{E} \cdot \boldsymbol{n}\; v^{\prime} \; d \Gamma
+ \int_{\Omega}\; q_V\; v^{\prime}\; d \Omega
\end{align} β β« Ξ© β ( β v β
Ξ΅ β v β² ) d Ξ© + β« Ξ β β Ξ΅ E β
n v β² d Ξ + β« Ξ© β q V β v β² d Ξ© β β