Skip to content

Electrostatics (v-formulation)

The Electrostatics v-formulation is derived based on the electrostatic approximation. As a starting point, we have the conditions

Bt=0Et=0.\begin{align} \frac{\partial \boldsymbol{B}}{\partial t} &= 0 \\[10pt] \frac{\partial \boldsymbol{E}}{\partial t} &= 0. \end{align}

Now with these conditions and the Maxwell’s equations, we have

εE=ρ×E=0,\begin{align} \nabla \cdot \varepsilon \boldsymbol{E} &= \rho \\[5pt] \nabla \times \boldsymbol{E} &= 0, \end{align}

where (3) is Gauss’s law and (4) is Faraday’s law. From Faraday’s law we see that curl of E\boldsymbol{E} is zero. Hence E\boldsymbol{E} is a conservative field, which means that there exists a scalar function vv such that

E=v,\begin{align} \boldsymbol{E} = -\nabla v, \end{align}

where vv is a scalar potential of the vector field E\boldsymbol{E}. By substituting (6) into Gauss’s law we obtain a Poisson’s equation

(εv)=ρ(εv)+ρ=0.\begin{align} \nabla \cdot (-\varepsilon \nabla v) &= \rho \\[5pt] \nabla \cdot (\varepsilon \nabla v) + \rho &= 0. \end{align}

The partial differential equation is multiplied by the test function vv^{\prime} and integrated over the whole domain Ω\Omega to get

Ω  ((εv))  v  dΩ+Ω  ρ  v  dΩ=0.\begin{align} \int_{\Omega}\; (\nabla \cdot (\varepsilon \nabla v))\; v^{\prime}\; d \Omega + \int_{\Omega}\; \rho\; v^{\prime}\; d \Omega = 0. \end{align}

Applying the Leibniz rule for nabla operator we get

Ω  (v  εv)  dΩΩ  (vεv)  dΩ+Ω  ρ  v  dΩ=0.\begin{align} \int_{\Omega}\; \nabla \cdot (v^{\prime}\; \varepsilon \nabla v)\; d \Omega - \int_{\Omega}\; (\nabla v^{\prime} \cdot \varepsilon \nabla v)\; d \Omega + \int_{\Omega}\; \rho\; v^{\prime}\; d \Omega = 0. \end{align}

For the first term we can use the Divergence theorem

Γ  n(v  εv)  dΩΩ  (vεv)  dΩ+Ω  ρ  v  dΩ=0.\begin{align} \int_{\Gamma}\; \boldsymbol{n} \cdot (v^{\prime}\; \varepsilon \nabla v)\; d \Omega - \int_{\Omega}\; (\nabla v^{\prime} \cdot \varepsilon \nabla v)\; d \Omega + \int_{\Omega}\; \rho\; v^{\prime}\; d \Omega = 0. \end{align}

Rearranging the terms and using relation E=v\boldsymbol{E} = - \nabla v on the Neumann term, we obtain

Ω  (εvv)  dΩ+Γ  (εEn)  v  dΓ+Ω  ρ  v  dΩ.\begin{align} \int_{\Omega}\; (-\varepsilon \nabla v \cdot \nabla v^{\prime})\; d \Omega + \int_{\Gamma}\; (-\varepsilon \boldsymbol{E} \cdot \boldsymbol{n})\; v^{\prime} \; d \Gamma + \int_{\Omega}\; \rho\; v^{\prime}\; d \Omega. \end{align}

Applies a fixed value to the scalar potential vv. Use this when you need to fix the scalar potential at a node or within a region. This can be used to drive a potential difference between two capacitor plates.

Lumped voltage or total charge excitation applied between terminals.

Imposes periodic boundary conditions for the vv. Reduces computational domain size for symmetric problems.


This formulation supports the following couplings:

Piezoelectricity (Solid mechanics)

Large displacement (Mesh deformation)

Piezoelectricity (Elastic waves)